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The Earliest Centenarians: A Statistical
Analysis

‘ by John R. Wilmoth

110
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When did the first centenarians live? It is well documented that the number of

o
-1 O
centenarians in industrialized countries has increased dramatically during this century
(Kannisto 1988, Thatcher 1981, 1992, Vaupel and Jeune, this monograph). Is it
] conceivable that at some earlier moment in human history there were no individuals

who achieved this milestone age? Or, to borrow a phrase from Vaupel and Jeune,
when did the "emergence of centenarians” occur? Are centenarians a product of the
e enormous mortality decline that accompanied industrialization?

Some authors have speculated that centenarians may have been rare or even
non-existent prior to the industrial era. For example, based on the observed trend in
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Figure 3. The force of mortality since 1550
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i : 15 < the maximum reported age at death in Sweden during 1861-1990, Wilmoth and
Lundstrom (1995) speculated that "true centenarians may have been quite rare in the
] e pre-industrial period." Similarly, Jeune (1994 and this monograph) put forth the more
© daring hypothesis that no humans lived to age 100 before 1800, or to 110 before
e 1950. Unfortunately, direct tests of these hypotheses are nearly impossible, since
:_‘?.v.“i. sgagaal 9 accurate records of age at death are usually available only for modern populations.
In this chapter we attempt to test these hypotheses using statistical models based on
d ] plausible scenarios of adult mortality in the period prior to the mortality decline of
‘ s = the past 250 years.
'\‘ To accomplish this task, we must address several preliminary questions. First,
] bt A in the absence of direct evidence, how can the concept of the "emergence of
- A o & centenarians" be defined and operationalized in a practical yet meaningful fashion?

2 Second, how can we model the age pattern of pre-industrial mortality, especially in
the late adult age range (since this is the age range that most affects the probability
of survival to age 100)? Third, what are plausible levels and patterns of pre-industrial

mortality?
In this chapter, we propose two definitions of the "emergence of centenarians”

and demonstrate that our predictions about the timing of that emergence are similar
for both definitions. We also suggest that the age pattern of adult mortality can be
modeled using the Gompertz-Perks family of curves. We derive evidence about the
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levels and patterns of pre-industrial mortality from a detailed analysis of model life
tables and from a review of existing studies of high-mortality populations.
Combining these various components, we conclude that it is likely that the
emergence of centenarians preceded the industrial revolution by several thousand
years. There is very little evidence to suggest that the trend in human life expectancy
rose (or fell) significantly during the agricultural era. Therefore, the emergence of
c§ntena1'ians during this period must be attributed to the gradual rise in population
size, which slowly increased the probability that centenarians, although extremely rare
worldwide, should have been observed with some minimal regularity. So defined, our
best guess is that the emergence of centenarians occurred once world population rose

to about 100 million around 2500 B.C. at the time of the first great civilizations of
the ancient world.

The Emergence of Centenarians

Given complete and accurate information about the lifetimes of all individuals who
have ever lived, it would be possible to identify a precise date when the first person
attained the age of 100 years. Lacking this information, however, we must resort to
statistical models that allow us to predict when the earliest centenarians might have
lived. These models can not yield precise dates for exact events. Rather, they are
used to derive the probability of a given event or an expected number of occurrences
within a specified time period.

From a historical perspective, we might say that the emergence of centenarians
occurred once the probability that all subsequent birth cohorts should have yielded at
leas.t one centenarian was above some level. This definition still requires important
choices, however. Do we mean single-year or 100-year birth cohorts, for example?
And do we want to require that the event occurs with at least even odds (p 20.5) or
with virtual certainty (p > 0.99)? In our calculations, we discovered that the latter
choice was not terribly important: most models that offered even odds (or better) of
at least one centenarian per cohort predicted, moreover, that a centenarian would be
observed with virtual certainty. Thus, we chose the stricter requirement.

The choice of a cohort boundary was more arbitrary. We reasoned that the
relevant issue was when centenarjans became sufficiently common that they would
have been observed at least on occasion worldwide, and it seemed reasonable to
equate "on occasion" with "at least once per century”. Thus, we propose to examine
whether, during a given era, it is likely that there would have been at least
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"occasional centenarians.” Formally, we will state that there were occasional
centenarians in some time period if, for a given model of mortality and estimated
population size, the probability of observing at least one centenarian per century was
0.99 or more. This definition does not insure that there would always have been one
living centenarian on the planet. It does mean, however, that the folklore of a single
person who was reputed to have attained this age could not be dismissed as utterly
implausible (although it might still be correct to dismiss a multitude of such reports
as fallacious). It also means that the phenomenon of being a centenarian was never
too far (in a temporal sense) from any living human during this time period.

With this definition, we still face an additional complication due to the fact that
multiple mortality scenarios may be considered plausible for a given historical period.
Also, although it is substantially less important than the mortality regime, we can
estimate the historical size of the world population only within a range. It is possible,
therefore, that we could have a number of conflicting indications about whether there
were occasional centenarians in some time period. For this reason, in order to assert
that centenarians had emerged by some date, we require that there be a
"preponderance of evidence" for occasional centenarians from that time onward.
Specifically, when considering multiple mortality scenarios, we require that three
fourths of them provide a positive indication for occasional centenarians in order to
proclaim the emergence of centenarians.

Thus, our first definition of the emergence of centenarians can be summarized
as follows: the historical emergence of centenarians is said to have occurred if a
preponderance of the available evidence (at least three quarters of the plausible
mortality scenarios) indicates with virtual certainty (p > 0.99) that centenarians must
have been observed at least occasionally (no less than once per century).

A second definition of the "emergence of centenarians" relies on the expected
number of living centenarians, rather than the probability of survival within a cohort.
One reasonable criterion for "emergence” is to require that the expected number of
centenarians in the world be at least one. Clearly, this criterion is more strict than
requiring at least one centenarian per century. Again, we will consider a range of
plausible mortality scenarios, and we will require a "preponderance of evidence" as
proof of the "emergence of centenarians.”

Using stable population theory, it is possible to compute the expected
prevalence of centenarians in the population for a given mortality scenario.
Multiplying this number by the estimated population size gives the expected number
of living centenarians. Because it is based on a single number (either the prevalence
estimate or the expected number of centenarians) rather than a dichotomous indicator
variable, this definition is somewhat more amenable to simulation studies than the




128

first definition. A range of plausible mortality scenarios produces a distribution of
prevalence estimates. If three quarters of the prevalence estimates predict at least one
centenarian in a given time period, then we say, by our second definition, that the
emergence of centenarians has occurred.

Gompertz-Perks Family of Mortality Curves

In order to model the probabilities or expectations described in the previous section,
we need a model of adult mortality. All mortality curves considered in this chapter
fall within the Gompertz-Perks family. This choice can be Justified by a combination
of theoretical arguments and empirical evidence.

Formulas

The well-known Gompertz mortality curve is given by the simple formula,

px) = ae® (1)

where a > 0 and b > 0. The Gompertz curve represents the age-dependent component
of mortality and is justified, in part, by the statistical theory of extreme values
(Gumbel 1937, 1958, Aarssen and de Haan 1994).  When plotted in a logarithmic
scale, the Gompertz curve rises linearly with age (Figure 1a), thus mimicking one of
the most commonly observed features of empirical mortality curves.

In Makeham’s formula, a small modification consists of adding a constant
parameter to the Gompertz curve:

() = ¢ + ae™ (2)

where ¢ > 0. The constant, c, represents the level of "background mortality" that is
the result of age-independent risks (Gavrilov and Gavrilova 1991, Horiuchi and
Wilmoth 1994). Compared to the Gompertz curve, the Makeham curve bends upward
at lower ages because it is bounded by a lower asymptote of ¢ (Figure 1b). The
importance of the background mortality constant in models of human mortality is well
documented. Even Gompertz had speculated about the existence of this second
component of adult mortality (Jordan 1975). In recent empirical work, furthermore,
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it has been demonstrated that a decrease in the age-independent background
component has been a major contributing factor to the overall decline of adult
mortality during the last century (Gavrilov and Gavrilova 1991). _

At the highest ages, it is now well-documented that mortality curves tend to rise
less than exponentially (Horiuchi and Coale 1990, Kannisto 1994), suggesting a
logistic form, such as contained in Beard’s formula:

_ae”™ 3)

px) =
1 + vae®

where v 2 0. Such a form for the mortality curve is also justified by theoretical
arguments, whereby the less-than-exponential increase at advanced ages may reflect
either the influence of population heterogeneity and differential selection, or the
workings of a multiply redundant system (Yashin et al. 1993, Gavrilov and Gavrilova
1991, Horiuchi and Wilmoth 1994). Compared to Gompertz’ law, the Beard formula
produces a curve that bends over at advanced ages, bounded by an upper asymptote
of 1/v (Figure 1c).

Combining these two modifications to the Gompertz curve yields Perks’

formula:

_ ¢ +ae @)

This formula produces a curve that deviates from the Gompertz at both younger and
older adult ages (Figure 1d). The Perks’ curve contains an inflection point in late
adulthood that should move upward as mortality falls (Horiuchi and Wilmoth 1994).
The graphs shown in Figure 1 are drawn using the average values of these four
parameters for the simulations of the base model described later in this chapter.

Re-parametrization

The full Perks formula contains 4 parameters, a, b, ¢, and v. Two of these have fairly
direct interpretations: c¢ represents the level of background mortality, 1/v gives the
upper asymptote of the mortality curve, and both are expressed in terms of the force
of mortality, p(x), in its original scale. The Gompertz parameters, a and b, on the
other hand, are more abstract: b is the rate of exponential increase in mortality across
the age range in the Gompertz model, but this interpretation is only approximate in
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the Makeham, Beard, or Perks models; a is the exact force of mortality at age 0 only
in the Gompertz model, but even this fact does not aid in interpretation since the
model applies to adult mortality alone.

Inchoosing the input assumptions for the model, it seemed judicious to
reparametrize this model so that all 4 parameters lend themselves to more direct
interpretations.  Since age 50 was (arbitrarily) chosen as a starting point for our
models of late adult mortality, ey, (remaining life expectancy at age 50) and gns, (the
death rate between ages 50 and 55) were chosen as alternatives for ¢ and b in the
above model. Using numerical methods, it is possible to find the unique parameters,
a and b, in the above formulas that reproduce a given ey, and gmy, (for fixed levels
of ¢ and v).' Thus, all model assumptions for this study are expressed in terms of
sy, Mgy, € and v.

Mortality Levels from the Neolithic to the Industrial Period

Having chosen a family of mortality curves, it is also necessary to examine existing
evidence regarding mortality levels and patterns during the pre-industrial period. For
example, what were typical values of life expectancy at birth or at age 50? Was the
age pattern of mortality similar to what we observe in modem life tables? Is there
evidence of a secular trend in mortality levels prior to the enormous decline of the
past 200 or 300 years?

It is surely accurate to state that none of these questions can be definitively
answered, at least based on evidence now available. Furthermore, it is not the
purpose of this study to add to the existing body of evidence about pre-industrial
mortality levels. Rather, our purpose in this section is to review the available
evidence and to extract from it reasonable conclusions about pre-industrial mortality
levels and patterns to serve as the basis for the present inquiry. We will draw our
mortality assumptions from a combination of sources. In this section, we examine
evidence about mortality levels in populations at historically low levels of life
expectancy. In the following section, we analyze data from two collections of model

'Formally, this conversion ought to include some requirement about choosing
"compatible" e5, and g5, s0 that @ and b do not come out to be zero or negative. There
probably is no easy analytical description of the boundary conditions for this choice, since
formulas for life table functions more complicated than l(x) do not exist for the curves in the
Gompertz-Perks family. We have not investigated this issue in detail, but it seems likely to
be irrelevant to the present study, which is limited to mortality curves that are in most aspects
derived from families of model life tables.
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life tables to derive relationships that help to determine the age pattern of mortality.

Regarding mortality levels, Table 1 brings together a number of estimates (_)f
life expectancy (both at birth and at age 50) in high-mortality populations from a
variety of sources. While we believe that this evidence provides a reasonable
justification for the assumptions about pre-industrial life expectancy adopted in this
chapter, we also acknowledge that the conclusions of this study may need to be
revised at some future date if different and better evidence becomes available.

There have been several notable attempts to trace pre-industrial trends in
morbidity and mortality. Reliable written records that could be used to document
historical mortality patterns are lacking for almost all large populations prior to the
industrial period. Historical demographers, however, have attempted to reconstruct
various populations using religious or genealogical records.  For example,
Hollingsworth (1977) computed life tables for the British peerage beginning with the
cohort born in 1550 (see Table 1). More recently, Lee et al. (1993) made mortality
estimates for the Qing imperial lineage (1644-1911), and Zhao (1994) calculated life
tables for the Wang dynasty during 0-1760 A.D. (Lee and his colleagues present their
results in graphical form only, and thus we give them here as a range of values with
an indication of the long-term trend.) Although these groups may not be
representative, the evidence from these studies of elites provides clues about what the
mortality experience of the general population may have been.

Another approach for estimating pre-industrial mortality levels and patterns is
based on paleodemographic data (mostly, from studies of skeletal remains). The most
extensive work in this area is the book by Acsadi and Nemeskeri (1970), which
contains life tables for a variety of populations, from early hunter-gatherers to modern
industrial societies. Table 1 in this chapter presents life expectancies for populations
from four pre-industrial periods (Stone Age, Copper Age, Roman era, and Middle
Ages). From among the various tables presented in Acsadi and Nemeskeri’s book,
here we consider four that were judged to be among the most reliable (Thatcher
1980). Nevertheless, the mortality levels given here may not be typical of the entire
time period in question. For example, the Stone Age population with an estimated
life expectancy of 21 years was unearthed at two cemeteries on the Maghreb region
in Morocco and Algeria. There it appears that burial practices were stable over a
period of two centuries, so it may be reasonable to conclude that the
paleodemographic data provide an accurate picture of the mortality of that population.
A stable community that survived so long during this time period was likely to be
advantaged, however, so Acsadi and Nemeskeri reckon that average Stone Age life
expectancies were probably lower than 21 years (a conclusion that may or may not
be correct).
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There are several reasons to be cautious about interpreting literally life tables
constructed from paleodemographic data (Sattenspiel and Harpending 1983, Johannson
and Horowitz 1986, Paine 1989, Wood et al. 1992). Probably the two most Important
for our purposes are the problems of selection bias and non-stationarity. As suggested
above, populations for which reliable paleodemographic data are available may tend
to be an advantaged or otherwise unrepresentative sample. Non-stationarity results
in biased estimates of life expectancy insofar as the real distribution of deaths in the
population does not mirror the hypothetical distribution of deaths in the life table. A
population with a stable positive growth rate, for example, would have an average age
at death that is lower than the life expectancy of the average individual.

Although these biases may be severe, it is also possible that they may tend to
cancel each another. If availability of apparently reliable paleodemographic data is
a marker of an advantaged society, then that advantage may be reflected in both lower
mortality and a positive growth rate. While the former would contribute to an
overestimate of average life expectancies, the latter would lead to an underestimate.
It is difficult to speculate without further investigation about whether these two biases
might be of similar magnitude. This argument does suggest, however, that
paleodemographic studies, in spite of their obvious flaws, may still provide a useful
indication of pre-industrial life expectancies.

In speculating about pre-industrial mortality levels, it is also useful to make
comparisons to high-mortality populations from more recent times. For this purpose,
Table 1 presents data from Indian life tables during the late 19th and early 20th
centuries (Davis 1951), as well as estimates for three 19th-century slave populations
(John 1988, Roberts 1952, Koplan 1983). The table also gives mortality estimates for
a unique group of freed American slaves who returned to Africa to build colonial
settlements in Liberia (McDaniel 1992). Life expectancy at birth for these Liberian
immigrants is the lowest ever recorded for a human population, due apparently to the
enormous toll of tropical diseases for which the immigrants lacked immunity. When
life expectancies are calculated conditional on surviving a full year after Immigration,
however, the Liberian levels are much closer to those observed in other high-mortality
populations (at least for life expectancy at birth, ¢,). Finally, Table 1 also gives life
expectancies for Sweden during 1751-1760, around the beginning of the industrial era,
from Breslau during 1687-1691 (Halley’s life table), and from England and Wales and

the city of Liverpool during 1841 (except the Swedish data, these figures come from
Thatcher 1980).

It is difficult to find clear evidence in Table 1 of long-term changes in mortality
levels prior to 1600 A.D. Mortality declines during recent centuries are evident in the
data for the British peers, the Qing imperial line, and India. For the British peers, this
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decrease is apparently concentrated in the adult ages, while for the Qing, infancy and
childhood appear to have been main loci of change. Over a much longer and earlier
time period, however, data for the Wang clan show no evidence of a secular mortaliFy
decline.  Unfortunately, the genealogical data used in the latter study contain
incomplete records of infant and childhood deaths, so reliable estimates of life
expectancy at birth are not available. Still, it is worth noting that the absence of a
long-term trend in Wang mortality during 0-1760 A.D. is indicated for all ages above
20 years (Zhao 1994).

Thus, although the mortality decline of the past few centuries has been
dramatic, there appears to be no solid evidence of significant long-term changes in
human life expectancy prior to the 17th century. Cohen (1989) argues eloquently that
human health and mortality deteriorated following the transition to agriculture that
began around 8000 B.C., although other scholars offer a more cautious interpretation
of the existing evidence (Wood et al. 1992). During the succeeding 10 millenia, there
appear to be no compelling arguments regarding the long-term trend in human
mortality prior to around 1600. It is certain that mortality levels fluctuated widely
during this period (Flinn 1981), but the evidence, flawed though it may be, provides
little suggestion of a long-term trend either upward or downward.

If we accept the theory that mortality trends were essentially flat during most
of the agricultural era, we are still faced with the problem of determining the
prevailing average level of life expectancy. Based on Table 1, we have adopted a
working assumption that the worldwide ey, during the agricultural era averaged around
14 years. It seems conceivable that this estimate could be off by a few years in either
direction, or that there could have been periodic swings in mortality levels lasting a
century or more. Therefore, our analyses in succeeding sections of this chapter
always consider a range of plausible life expectancies. Given the available evidence,
however, it seems unlikely that e5, on a world scale would have dipped below 9 years
or risen above 19 years for extended periods during this era.

The justification for assuming that e, had an average value around 14 years in
the agricultural era is imperfect but, on balance, a seemingly reasonable conclusion.
A simplistic argument is that e5, must have averaged around 14 years since that value
lies at the midpoint of the range of available estimates (roughly, from 9 to 19 years).

Nevertheless, some of the evidence in Table I might suggest that typical values
of e5, were lower than 14 years. For example, among the results from Acsadi and
Nemeskeri, only the Roman life table has an ey, above 12 years, but the residents of
the Roman empire may have enjoyed an unusually advantageous health environment
compared with surrounding peoples and time periods. Thus, the lower values of €<
found in the tables for the Copper Age and the Middle Ages could represent more
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typical levels of pre-industrial life expectancy.

[t is quite questionable whether all of the estimates of e, in Table 1 should be
read literally, however. In particular, the estimates based on skeletal remains are
suspect, since apparently the techniques of age imputation on which they rely
produced no evidence of very old individuals. Thus, the life tables for the Stone Age,
the Copper Age, and the Middle Ages referred to in Table ! indicate a zero
probability of surviving past ages 78, 76, and 85, respectively. It is worth mentioning
that, among the four sets of life expectancies in Table | taken from Acsadi and
Nemeskeri (1970), only the Roman set was not based on skeletal remains. Rather,
this Roman era life table was constructed from tombstone epitaphs and contains a
maximum age at death of 100 years. It is less surprising, then, that it alone among
these four contains a higher estimate of ey,

We might also argue that the results in Table 1 are biased because elite
populations are over-represented. For example, some of the highest estimates of adult
life expectancies during the agricultural era are found in the life tables for the Wang
dynasty, but these pertain to an elite population whose mortality experience may have
been atypical compared to the overall population.” On the other hand, the earliest
mortality estimates for the British peerage, another elite group, contain an e, of only
about 12 years. Therefore, the mortality experience of elites is not necessarily more
favorable than the average.

A further piece of evidence that e¢g, should have averaged around 14 years
during the agricultural era comes from combining direct mortality estimates with
information from model life tables. For example, Table 2 shows the values of ¢, and
es, contained in Coale-Demeny model life tables at low levels (Coale and Demeny
1983), and in an alternative set of model life tables constructed by Preston et al.
(1993). If we believe that agricultural ¢, was centered in the low to mid twenties
(and almost all the available evidence is consistent with this conclusion), then the
Coale-Demeny model life tables indicate that eg, should have been around 14 years
or slightly higher.

At these low levels of life expectancy, however, the Coale-Demeny model life
tables are the result an extrapolation from life tables at much higher levels of life
expectancy. Indeed, the lowest levels of ¢, in the tables used to construct this set of
model life tables were 33.4 years for males and 35.5 years for females (Preston ef al.
1993). Thus, the relationships between ¢, and ey, in very high mortality populations
may be poorly represented by these tables. Some authors have argued, in particular,

“Although note that, since the estimates of g, for the Wang are around 16-18 years, this would
be an advantaged mortality experience cven if average values were as high as 14 years.
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that the Coale-Demeny tables may overestimate infant mortality at low levels of life
expectancy and simultaneously underestimate adult mortality (Bhat 1987, Preston er
al. 1993). Thus, the values of ey, for the Coale-Demeny tables in Table 2 may be too
high relative to e,.

A new set of model life tables, however, seeks to correct this imperfection.
Preston et al. (1993) computed model life tables at low levels of life expectancy
based on interpolation between the raw Liberian life table described earlier (with
extremely low life expectancies, as seen in Table 1) and the United Nations General
mortality pattern with ¢, = 35. The relationship between e, and es, for these tables
is also shown in Table 2. From these results, if ¢, was around 24 years, then e,
should have been around 14 years. Furthermore, in order to obtain an ¢s, as low as
12 years, these model life tables suggest that the average male-female ¢, would need
to be around 15 years, a value that seems unrealistically low based on all available
historical evidence. In conclusion, then, the evidence from model life tables seems to
provide additional support for our assumption that agricultural levels of es, should
have been around 14 years on average.

As stated earlier, however, the purpose of this investigation is not to resolve the
issue of mortality levels and trends during the agricultural era. Rather, our strategy
here is to use existing evidence to derive plausible input assumptions for our models
of centenarian prevalence. If these assumptions prove to be incorrect upon
consideration of further evidence, the results presented here could simply be modified
using the same mode! with new inputs. Furthermore, since we employ a range of
assumptions in this chapter, the reader has the opportunity to arrive at different
conclusions without making additional calculations.

Mortality Patterns at Low Life Expectancies from Model Life
Tables

Aside from the question of mortality levels, it is also necessary to make assumptions
about the relationships that determine the age pattern of mortality. In the
Gompertz-Perks model, the mortality curve is fully specified only when a chosen
value of ey, is accompanied by assumptions regarding ¢ms, ¢, and v. Three of these
parameters, e, s, and ¢, tend to be strongly correlated, so they must be chosen in
a manner to insure that the resulting mortality curve is plausible. That is, in most
known life tables, a given level of es, tends to be associated with a fairly narrow
range of values for yms, and c. If these correlations are ignored in choosing the input
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parameters, the curve that results may be quite different in character from anything
we have thus far observed in populations for which reliable data are available.

Of course, it is possible that mortality curves for pre-industrial populations
differed in fundamental ways from the more recent life tables that form the basis of
our experience in these matters. In this study, however, we assume that early life
tables share the same kinds of empirical relationships between the parameters of the
Gompertz-Perks family that are observed in modern life tables. These relationships
can best be derived through an analysis of model life tables and are expressed here
by a series of regressions. These regression are used to guide the choice of model
parameters in the analyses of the following sections.

The two most commonly used sets of model life tables are the Coale-Demeny
and U.N. collections (Coale and Demeny 1983, United Nations 1982). Both were
developed based on observed empirical relationships among life tables constructed
from what were thought to be reliable data. Both collections of model life tables
contain a handful of "regions" or "patterns,” which represent different typical age
schedules of mortality. The Coale-Demeny system contains four regions: North,
South, East, and West. The U.N. system contains five patterns: Chilean, Latin
American, Far Eastern, South Asian, and General.

As noted earlier, however, few of the life tables used in constructing these two
sets of model life tables displayed overall levels of mortality that would be considered
very low by historical standards. Among the input tables for the U.N. set, the lowest
life expectancies at birth were 37.6 (males) and 40.1 (females). Coale and Demeny
had only a few reliable observations of mortality at lower levels of life expectancy:
the lowest levels of ¢, in their input tables were 33.4 years for males and 35.5 years
for females (Preston et al. 1993). In contrast, it is generally assumed that life
expectancy in the pre-industrial era was centered in the low to mid twenties (see
previous section). Thus, the model life tables used for guiding our choice of model
parameters are already based, in part, on extrapolations of the age pattern of mortality
outside the range of reliable life tables.’

Our first task is to choose values of sthsy and ¢ for a given level of esy. Figure
2 demonstrates the inverse log-linear relationship that is typical for e5; and ym,,. This
graph also shows the linear regression of the model life table values of log(sms,) on

"Detailed data for the new model life tables by Preston er al (1993) became available to us after
the computational analyses of this paper were complete. Due to time constraints, it was not possible
to re-compute the regression equations and subsequent simulations including these new tables, which
have the advantage of being derived from an interpolation within the range, rather than an
extrapolation outside the range, of actual data. It seems unlikely, however, that their inclusion
would have changed our results substantially.
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¢so- The analysis is restricted to model life tables with e, below 40 years for the U.N.
tables, or levels 1-9 for the Coale-Demeny tables. The data points for females are
indicated by upper-case letters; for males, by lower-case letters. This regression
explains 84 percent of the original variance in log(sm,). Three lines are shown in
Figure 2: the OLS regression line, and this regression line plus and minus the
maximum residual from the regression. In the analyses that follow, the choice of Mg
for a given ey, is centered around the value given by this OLS regression line.
Alternate values are expressed as the regression estimate plus or minus some
proportion of the maximum residual.’ |

The method for choosing values of the background mortality parameter, ¢, is
somewhat more complicated, because it involves a multiple regression. Figure 3
shows simple scatter plots of ¢ against both e, and gng,.” Neither of these pairs are
as strongly correlated as ey, and log(sms,) (the correlation coefficients are -0.72 for
eso and ¢ and 0.85 for log(smy,) and ¢, compared to 0.94 for ey, and log(sms,)). The
best prediction is achieved by regressing ¢ on both e, and sMse, although such a
model still only explains 77 percent of the original variance. In some of the analyses
that follow, the value for ¢ is assumed to equal either this regression estimate, or the
estimate plus or minus some proportion of the maximum residual from the regression.

The fourth parameter of the Gompertz-Perks mortality model, v, determines the
upper asymptote of the mortality curve. Unlike the other parameters, however, the
values of v that were found by fitting the Perks formula to model life tables did not
demonstrate significant or meaningful correlations with the other parameters. In any
case, these estimated values of v should not be viewed as reliable, since they are
based on model life tables with limited detail regarding the age pattern of mortality
in the age range where the effects of this parameter are most evident, in particular,
above age 90 or 100. For this reason, in the following analyses, the parameter v was
chosen in a more arbitrary fashion, based nevertheless on empirical evidence about
typical values of this parameter derived from modern, low-mortality populations.

A fifth mortality parameter is needed when we calculate estimates of
centenarian prevalence. Because the Gompertz-Perks model is valid only in the adult
age range (in our usage, above age 50), we also need an estimate of survivorship at

“An alternative method would have been to choose a range of values for log (sms,) based on
multiples of the root mean-squared-error of the regression. If the observations were independent,
there would be an elegant statistical theory to support such a choice. In this situation, however, the
observations are clearly dependent, so there is no strong rationale for using this technique.

*Values of ¢ were estimated by fitting the Perks formula to model life table gz, values (above
age 50 only) using the method of maximum likelihood.
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younger ages. Using standard notation, let /(50) be the proportion surviving from
birth to age 50. As before, to obtain a "best estimate” of /(50) (conditional on ex,,
sMsy, and ¢) we will rely on a regression equation derived from model life tables at
low life expectancies. In simulations, the chosen value of /(50) will equal this
estimate plus or minus some multiple of the maximum residual from the regression
analysis. One complication, however, is that we dropped the life tables for the U.N.
Far Eastern pattern before fitting the regression model, since the relationship between
[(50) and the other parameters is quite atypical in this case: the values of [(50) for
the Far Eastern tables are unusually high, so including them in the model shifts the
regression estimate upward and produces rather large residuals. It was thus
convenient to eliminate the Far Eastern tables from the main analysis and later to test
the importance of this simplification in a sensitivity analysis.

Evidence for an "Occasional Centenarian” prior to 1700

The first question that we will address in this chapter can be stated as follows: Is it
plausible that there were individuals who attained the age of 100 years, at least on
occasion, during the long period of human history from the Agricultural to the
Industrial Revolutions? As a shorthand for this question, we are looking for evidence
of an "occasional centenarian" during this period. There is very little reliable
historical documentation from this period that might definitively resolve this issue.
Thus, our investigation will be based on statistical models, which are used to assess
the plausibility that at least a few individuals, on a worldwide basis, might have
atrained the milestone age of 100 years prior to around 1700.

There are various means of defining, formally, what is meant by the phrase "an
occasional centenarian." Statistical models of the kind described in the previous
section all yield non-zero estimates of the probability of survival to age 100, and thus
they produce non-zero estimates of the expected number of centenarians (however
defined) as well. 'We must choose a threshold level for the probability of observing
at least one centenarian during some period. As discussed previously, it seems
reasonable to assert that an "occasional centenarian" would mean that at least one
person had attained this age (worldwide) during a given century.

Accepting the arbitrary nature of these choices, we thus propose the following
formalization of the notion of an occasional centenarian. Let X be a random variable
representing the number of individuals who attain age 100 during a given century.
Then, for a given mortality scenario, we will say that there is an occasional
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centenarian during that century if P[le] > 0.99. In a Poisson probability model, this
requirement implies that the expected number of centenarians during this period is at
least 4.6. In other words, an average of 5 or more centenarians every 100 years is
almost certain to yield at least one centenarian per century.

Figures 4 through 6 summarize the results of this analysis. A brief outline of
the steps taken to produce a single data point in Figures 4 through 6 is given below,
followed by a more detailed description of each step:

l. Choose a set of four input parameters (e, <5, ¢ and V), limiting the choice
of input parameters to values that may be considered at least weakly plausible
based on mortality patterns in model life tables and other sources.

2. Convert e, and sms, to ¢ and b (holding ¢ and v constant).

3. Using the Gompertz-Perks model, compute the probability of survival from age
50 to 100, thus /(100) / /(50).

4. Choose an assumption for the initial population size, called Ns,, which equals
the estimated number of persons who attain age 50 (worldwide) during a given
century.

5 Following the binomial model, compute the expected number of survivors to
age 100, called A, out of the initial cohort of Ng,. Thus, A:Nmm.

1(50)
6. Following the Poisson model, compute the probability of at least one surviving

centenarian out of an initial cohort of Ny, individuals, thus 1 - ¢* . If this
probability exceeds 0.99, then a dot corresponding to the assumed parameter
values is plotted in Figures 4 through 6 in the appropriate location.

Step 1

The decision to limit assumed values of ¢, to the range of 9-19 years was based on
the evidence presented earlier, which shows that this range includes almost all
plausible estimates of mortality levels above age 50 in agricultural populations prior
to the mortality decline of the industrial period. We use model life tables to guide
our choice of smy, and ¢ for a given level of ey, For each value of e, seven levels
of gms, were considered: the regression estimate (see previous section) plus or minus
0.5, 1, or 1.5 times the maximum residual from the regression.

The choices of ¢ used in constructing Figures 4-6 are based partly on the
regression model of the previous section and partly on a simpler strategy for obtaining
an assumed value of the background mortality parameter. Regression values plus or
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minus some multiple of the maximum residual sometimes yielded implausible, or
even impossible (i.e., negative), values of ¢. For this reason, one set of calculations
in Figures 4-6 is based on the exact regression estimates of ¢. The other three sets
of calculations assume that ¢ is some fixed proportion of the mortality rate between
ages 50 and 55, smy,. For the model life tables considered here, this proportion varies
from a minimum of 9 percent to a maximum of 63 percent. Thus, calculations based
on assumed proportions of 5 and 65 percent represent the extremes of plausibility,
while 35 percent is an intermediate value. By choosing the values of ¢ in this
fashion, we are also better able to consider the impact of this background mortality
parameter on calculated survival probabilities.

The last parameter to be chosen, v, determines the upper asymptote of the
mortality curve. As noted before, this asymptote equals 1/v. Setting v = 0 implies
that mortality increases in an exponential fashion (hence, with no upper limit) at the
highest ages. Setting v = 1 implies that the upper asymptote of the u(x) curve equals
one. The values of v used here can safely be thought to cover the range of plausible
levels of this parameter. An upper asymptote of one is a fairly reasonable assumption
based on available empirical evidence, although it is important to bear in mind that
such evidence that exists is derived from modern, low-mortality populations. The
assumptions, v = 0.5 and v = 1.5, are probably already sufficiently extreme that they
cover the plausible range of human experience. The assumption, v = 0, is included
mostly for comparison purposes and seems much less likely based on evidence from
modern life tables.

Step 2

Numerical methods were used to convert ey, and sMsy Into @ and b (for given values
of ¢ and V). In brief, the value of 4 is found by a numerical search algorithm to
match the assumed value of e,. On each iteration, the value of ¢ given b is obtained
using equation (4) and assuming that p(52.5) = sMsq.

Step 3

The probability of survival from age 50 to 100, thus [(100) / I(50), is calculated using
the following formula:

1 + vae® |3 -
b ve—c(x—y) l_'fV >0
10 211 + vae?
1) (¢ (& =) - Je™ - et
e i’ ifv =20

(5)

Step 4

Assumed population sizes are based on those given in Durand (1977) and shown in
Table 3. It is necessary to convert estimates of total population size into N, which
equals the estimated number of persons who attained age 50 during a given century.
Three periods were selected for this analysis: circa 8000 B.C., corresponding
(roughly) to the beginning of the agricultural era; circa A.D. 0-14, during the Roman
Empire; and the 17th century, just prior to the Industrial Revolution.

It is clear from a comparison of Figures 4, 5, and 6 that these calculations are
not terribly sensitive to differences in population size: even the very large differences
in base population between these three time periods yield rather small differences in
the probability of observing an occasional centenarian (in case it is not obvious to the
reader, the differences between these three figures are due entirely to differences in
assumed population size). Similarly, all plausible population estimates for a single
time period produce nearly identical results, so we can comfortably choose a single
set of estimates and not worry about the sensitivity of the results to this one parameter
choice.

To obtain an assumed value of Ny, for each time period, we began by observing
that the proportion of a population that is age 50 lies within a fairly narrow range
under a variety of plausible assumptions about mortality levels and growth rates. For
example, considering all model life tables in the Coale-Demeny system with e,
between 20 and 30 years, and allowing the growth rate in a stable population to
fluctuate between -0.5 and +1 percent, the number of individuals who are aged 50 as
a proportion of the total population lies in a range of 0.64 to 1.2 percent (the details
of these calculations, based on Coale and Demeny 1983, are available from the author
upon request). For a single estimate, therefore, it seems reasonable to assume that the
number of individuals attaining age 50 in a single year equals 0.9 percent of the
average total population for that year. For this analysis, however, we have defined
N5, to be the number of persons who attain age 50 over the period of a century.
Thus, multiplying by 100, we will assume that N, equals 0.9 multiplied by the
average total population during the century.

For the three time periods in question (circa 8000 B.C., circa A.D. 0-14, and
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the 17th century), we assume that the average total population size was 8, 300, and
700 million persons (see Table 3). Thus, Ny, for these three periods was taken to
equal 7.2, 270, and 630 million persons. Although these estimates must be considered
very rough approximations, they are adequate given the minimal sensitivity of the
results to this particular assumption.

Step 5

Calculation of the estimated number of centenarians out of an initial cohort of Ny,
persons is straightforward using the binomial probability model. In this instance, the
probability of survival is /(100) / /(50), and thus the expected number of centenarians,

A, equals Nsoll((lT(:)(;)'

Step 6

The Poisson model provides a convenient and accurate approximation to the binomial
in situations where the population size is large and the probability of "success" is
small. Given A, the expected number of centenarians, the probability of observing at
least one centenarian equals 1 - ¢*. If this probability exceeds 0.99, then a dot
corresponding to the assumed parameter values is plotted in Figures 4 through 6 in
the appropriate location. These figures are drawn in a way that allows us to observe
the importance of all four parameters of the Gompertz-Perks mortality model. Each
figure contains four graphs, which differ among themselves in the manner of choosing
the background mortality parameter, ¢. In addition, for each combination of es, and
sMs, in these graphs, there may be up to four points representing four assumed values
of the parameter v (these four points are centered around the assumed value of €55
which in all cases equals a whole number value between 9 and 19 years).

Interpretation

The purpose of Figures 4-6 is to provide information about the mortality conditions
that would have been necessary in a given era to yield an occasional centenarian,
without yet speculating in a precise manner about what those mortality conditions
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were. At this point, we are asserting only that overall mortality levels above age 50
in these periods were probably in a range to produce an e, between 9 and 19 years,
with associated levels of gms, ¢, and v as depicted in these graphs. These three
figures make it clear, therefore, that our ultimate conclusions about the existence of
occasional centenarians in the pre-industrial era will depend on our assumptions about
the actual levels of mortality within this broad range.

These figures provide an illustration of the role of the various model parameters
in determining the likelihood of survival to age 100. All four parameters can have
important effects on the conclusions emerging from this sort of analysis, although it
may be less obvious why each parameter affects survival probabilities in a given
manner. Clearly, increasing values of eg, are associated with increasing probabilities
of survival and thus an increasing likelihood of observing an occasional centenarian.
For a given level of ey, however, Figures 4-6 indicate that survival to age 100 is
more likely for relatively higher values of smg,. This result can be explained as
follows: for a fixed value of es,, a higher value of gm., is associated with a slower
pace of mortality increase with age, thus yielding a higher probability of survival to
very advanced ages.

Similarly, it is also evident that higher values of the background mortality
parameter, ¢, (expressed as a percentage of ¢mg,) are associated with a lower
probability of survival to age 100. The explanation is somewhat complicated: a
higher level of background mortality around age 50 implies a lower level of senescent
mortality; above age 50 in this situation, senescent mortality must increase more
rapidly in order to match the fixed level of ey, thus yielding a more pronounced
die-off at older ages and thus a lower probability of survival to advanced ages. Thus,
as seen in Figures 4-6, the likelihood of observing an occasional centenarian
diminishes considerably as ¢ increases from 5 to 65 percent of sms,. Typically, the
value of ¢ as a percent of smjy, declines as mortality levels drop and life expectancy
increases. Thus, the fourth graph in each figure, where ¢ is derived from an OLS
regression of ¢ on eg, and gms,, is more similar to the graph marked "c = 65%" at low
levels of es, and to the graph marked "c = 5%" at high levels of e,

The importance of the fourth parameter, v, is also evident in Figures 4-6. Since
I/v equals the upper asymptote of the age curve of mortality, higher values of v are
associated with lower mortality rates at high ages and thus higher probabilities of
survival to advanced ages. For this reason, the dots in Figures 4-6 are most often
present in the fourth column of each cluster (corresponding to v = 1.5) and most often
absent in the first column (v = 0).

In all three time periods examined in Figures 4-6, it is evident that life
expectancies (es,) at the low end of the range considered here imply mortality
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conditions that could have been too harsh to guarantee at least one centenarian per

century. At the other extreme, a relatively high value of ¢, within this range suggests
mortality conditions that would have yielded at least one centenarian per century in
almost every conceivable scenario. In between these two extremes, it is difficult to
reach any firm conclusions about whether or not there may have been occasional
centenarians during these time periods. To develop this discussion further, however,
we first need some standard about how to evaluate the information in these figures.

Note that it is possible to have a maximum of 28 dots in these figures for each

combination of es, with a given method of deriving ¢, the background mortality
parameter. If all 28 dots are present, we may conclude that an occasional centenarian
was extremely likely (i.e., with a probability greater than 0.99) under every plausible
mortality scenario at that level of mortality and for that choice of ¢. If we narrow our
focus to the overall mortality level, esp, then there are a total of 4 x 28 = 112 possible
dots. Note in Figure 6, for example, that only 5 of these 112 possible dots are
missing when e, equals 19. At the other extreme, there are only 50 dots present
(thus, less than half) in these graphs when ey, equals 9. If we consider that all of
these scenarios are equally likely (surely not the case, but a useful simplification for
our current purposes), we have a quantitative means of asserting that assumed levels
of eg, around 19 suggest that there would almost certainly have been at least one
centenarian during the 17th century, while levels around 9 indicate that the existence
of a single centenarian in this period would have been a possibility although by no
means a certainty.

In the middle range of ey, any conclusion about the likelihood of an occasional
centenarian depends critically on the assumed values of the other parameters of the
mortality model and on population size as well. When eso equals 14, for example, the
three figures contain a total of 63, 89, or 90 dots out of the 112 possible
(corresponding to the periods around 8000 B.C., AD. 0-14, and the 17th century,
respectively). Thus, for the latter two periods, mortality levels in the middle range
would yield an occasional centenarian in more than three fourths of the plausible
mortality scenarios. For the earliest time period, however, only about half of the
plausible scenarios at this level of eso would produce an occasional centenarian.
Therefore, we might reasonably conclude that an ey, around 14 years would provide
a fairly strong indication (though no guarantee) of occasional centenarians from at
least Roman times to the present. In earlier time periods with much smaller
population sizes, such as those probably observed at the dawn of the agricultural era,
it seems almost equally likely from our vantage point that an eso around 14 years

might have yielded at least one centenarian per century, or that centenarians could
have been rarer or even non-existent.
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In a previous section, we have argued that a life expectancy, es, a.round 14
years is a reasonable "best guess" based on available evidence .of m(?rtallt.y leve%s
prior to the industrial era. If this estimate 1s accurate, we migbt lesh to identify more
precisely the first time period in which there is a strong indication that .there wou‘ld
have been at least an occasional living centenarian. Based on the p‘recedmg analysis,
we may attempt to identify a population size and corresponding time pérlofi where
three fourths of the mortality scenarios associated with an ey, of 14 year§ indicate the
presence of an occasional centenarian with very high probability. By trial and error,
it was determined that a world population of just under 100 million Persons would be
sufficient to produce such a result. Using Durand’s population estimates (see Table
3) and assuming a fairly stable growth rate between 8000 BC and A.D. 0-14, such
a population size would have been attained sometime during 3000-2000 B.C., thus
around the time of the nascent civilizations of the ancient world (for example, the Old
Kingdom in Egypt, or the Sumerian era in Mesopotamia).’ . -

Arguably, then, centenarians may have been a product, not of 1ndustrlahzzl1t10n
during the past 200 years, but of civilization during the past 5090 years. ‘It wa§ n?t
the trappings of civilization per se, however, that would have ylellded an .1ncrease in
the likelihood of observing an occasional centenarian, since there is no ev1deflc.e that
the rise of early civilizations resulted in a reduction in levels of morbidity qr
mortality, or a corresponding increase in life expectancy (Cohen 1939). Rather, it
was the slow growth of world population during this period tha.t accm-mts‘for the
increasing probability that at least one individual would have attained this mlle.:stone
age during the course of a single century. It must theref9re be cons@ered
coincidental that the critical population mass necessary to yield an‘ occasional

centenarian at the assumed mortality level (e, around 14 years) was attained around

the time of the birth of civilization.

Estimates of Centenarian Prevalence prior to 1700

Our earlier analysis has shown that, under plausible mortality assumptions, at l.eas.t an
occasional individual must have survived to the age of 100 years since the beginnings

°[t is worth noting that the estimates of historical populzlition size by Biraben-(1979);u1gz%eostBthét
a world population of 100 million may have firs',t be(?n a'chle'ved spmewha.t late;l , aroun Cknowledgé
The paucity of reliable data about world population size in this per1oq reqltnrcl:ls t arf v:ed aes e
the uncertainty of our estimated date for the emergence Qf centenarians, alt gui 1,‘ ond Durénd’s
obligatory that we revise our best estimate based on the difference between Biraben’s a

figures.
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of civilization some 4000-5000 years ago. Another approach to this problem is to
estimate the prevalence of centenarians in a stable population under a range of
assumptions. Using this approach, we specify an a prior distribution for each
parameter of the mortality model, and then calculate prevalence estimates by drawing
randomly from those distributions. The result is a distribution of estimates of
centenarian prevalence. The center of that distribution may be taken as our best
estimate of centenarian prevalence, and the sensitivity of that center to changes in the

underlying assumptions can be assessed.
According to stable population theory (e.g., Keyfitz 1985), the proportion of the
population above age 100 is as follows:
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where x in these integrals denotes age, b (in this equation only) is the birth rate, r is
the population growth rate, /(x) is the probability of survival from age 0 to x, and y
is some intermediate age (in our example, age 50) such that precise mortality
estimates are available only above age y. The complication of splitting the integral
in the denominator at age y is necessitated by the fact that our parametric mortality
model is valid for adult ages only. For convenience, we choose y = 50.

Lacking estimates of /(x) for x<y, it is necessary to approximate the first
integral of the denominator. Assuming a linear decline in the survival curve from age

0toy, ie., jx=1-%1 -i(y)) 1t is possible to show that
y
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Using these formulas, we can calculate the prevalence of centenarians in the stable
population, _c¢,,. given three quantities: 1) the probability of surviving from age y
to x, l(x) / l(y), for all x > ¥: 2) the probability of surviving from birth to age y, I(y);
and 3) the population growth rate, r.

The values of the parameters in equation (6) were selected in a manner that
reflects our uncertainty about their true values during the pre-industrial period. The
result is a set of simulations where the exact values of the chosen parameters are
different for each trial. First, a set of simulations were performed using a "base
model". Next, various modifications to the base model were made and additional sets
of simulations were computed in order to evaluate the sensitivity of the results to
changes in assumptions.

For each trial, the choice of parameters for the base model can be described
briefly as follows:

l. es, was fixed at 14 years.

2. sMso» ¢, and [(50) were drawn at random from normal distributions whose
means were chosen conditionally based on all previously selected parameters.
(In other words, using the same set of high-mortality model life tables as
before, the distribution for (g, was centered on the predicted value from a
simple regression on eyy; the distribution for ¢ was centered on the predicted
value from a multiple regression on eso and smsq; and the distribution for /(50)
was centered on the predicted value from a multiple regression on e, smg,, and
c.) In each case, the standard error for this distribution was set equal to the
maximum residual (from the respective regressions) divided by 3.

3. Vv was drawn at random from a normal distribution centered on 1.0, with a
standard error of 0.2.

4. The population growth rate, r, was fixed at 0.05%, which equals the long-term
annual growth rate of the human population during the agricultural era. (The
population growth rate was not allowed to vary within each set of simulations
since we can be more certain about its value, at least in the long term, than
about the parameters of the mortality model.)

After choosing the parameters for each simulation trial, equation (6) was used
to compute the prevalence of centenarians, expressed as a proportion of the total
(stable) population. The resulting distribution of prevalence estimates is shown in
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Figure 7. It is evident that these estimates have a wide range, reflecting the
uncertainty about centenarian prevalence that results from our uncertainty about the
relationships between the various parameters of the mortality model. After a
logarithmic (base 10) transform, however, the distribution of prevalence estimates has
a nearly symmetrical shape. The median prevalence estimate in the base model, as
reported in Table 4, is 4.7 centenarians per 100 million population. Expressed as a
base-10 logarithm, the median estimate equals -7.33 and thus lies squarely in the
middle of the distribution shown in Figure 7. Although the entire distribution has a
rather broad range, over three fourths of these prevalence estimates are above 1 per
100 million (or 10®).

These results provide further (and stronger) support for our earlier conclusion
that centenarians must have been observed at least on occasion once world population
surpassed 100 million. By our previous arguments, with ey, equal to 14 years, around
three quarters of the plausible mortality scenarios yielded a high probability of
observing at least one centenarian every hundred years once world population
exceeded 100 million. Now, over three fourths of our plausible mortality scenarios
(with ey, fixed at 14 years, accompanied by various age patterns of mortality) predict
an average of at least one centenarian at any given moment out of a population of 100
million.

Table 4 also gives prevalence estimates for super-centenarians (individuals aged
110 years or older) derived from the simulations of the base model. These results
suggest unmistakably that no individual was likely to have survived to age 110 during
the agricultural era. The median estimate for the prevalence of super-centenarians in
this model is 0.002 per 100 million. At this level, a population of 100 million
persons observed for 1000 years would have only an expected 2 person-years of
super-centenarian lifetime. Such a small expectation can reasonably be equated with
our everyday notion of impossibility. Only the most optimistic 10-15 percent of the
simulated mortality scenarios produce estimates of super- centenarian prevalence that
might contradict the conclusion that there were no individuals living past age 110
during the agricultural era. Thus, although there may have been occasional
centenarians for the past 4 or 5 thousand years, it appears that super-centenarians
were most likely a product of the mortality decline of the industrial era.

The sensitivity of the centenarian prevalence estimates is evaluated in Table 5.
This analysis varies the levels of mortality (es,) as well as the other parameters of the
mortality model (sms, ¢, and V). In the former case, four additional (fixed) values of
es, are employed. In the latter three cases, the distributions of the simulated
parameters are increased or decreased by one standard error relative to the base
model.
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Another sensitivity test varies the size of the standard error (c) used in the
simulations. In the base model, the standard error used for deriving smy,, ¢, and [(50)
equalled the maximum residual (from each regression) divided by 3. For a sensitivity
analysis, a smaller 6 was obtained by dividing by 4; a larger o, by 2. Two other
modifications to the base model were the "wild card /(50)" and variations in the
population growth rate, r. For the "wild card /(50)" trial, the simulations were
modified to include an occasional choice for /(50) that was unusually high given the
levels of ey, gng, and ¢ (to mimic the Far Eastern mortality pattern, which was
dropped from the earlier regression model of 1(50)).

Most of these changes yielded results that would not materially alter our
conclusions regarding the prevalence of centenarians in pre-industrial times: for most
scenarios, nearly three quarters or more of the simulations predict at least one
centenarian per 100 million population. One exception to this rule is the scenario
with a growth rate of 2 percent. Sustained growth rates of this magnitude in
pre-industrial times must be considered very unlikely, however, so we need not be
overly concerned with this result. On the other hand, it is important to examine the
effects of altering the overall level of mortality (e,) or the conditional distribution of
smso (given exp).

In each of the simulations, the level of gny, was derived from a regression
model (with ey, as the independent variable). It is clear from Table 5 that a shift of
one standard error in the conditional distribution of g, has a relatively larger impact
on the distribution of prevalence estimates than the other sensitivity tests, with the
exception of changes in the mortality level itself (ie., es)). Nevertheless, these
sensitivity tests would not alter the most important conclusion of this analysis,
namely, that the expected prevalence of centenarians worldwide exceeded one well
before the industrial era. Even in the scenario labeled "Lower sms,", three quarters
of the scenarios have prevalence estimates above 0.35 per 100 million. Thus, at least
one centenarian would be expected in a population of 300 million or more, which was
achieved during Roman times. At the other extreme, the "Higher sms," scenario
suggests that a population much smaller than 100 million might have contained at
least one centenarian (on average). It is difficult to argue that these scenarios are
extremely unlikely: the centers of the (conditional) distributions of sMs, differ from
the regression model by one standard error, which is only one third of the maximum
residual from the regression. Thus, there remains a degree of uncertainty about the

"With a probability of 95 percent, /(50) was drawn by the method of the base model. With a
probability of 5 percent, the predicted value of /(50) from the regression of the base model was
increased by 0.2 (while retaining the same standard €error),
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precise timing of the emergence of centenarians, although we can remain fairly certain
that the emergence (by this definition) preceded the industrial era by nearly 2000
years or more.

Obviously, it is the overall mortality level that has the largest impact on our
predictions regarding the prevalence of centenarians through history. If late adult
mortality was lower (es, equal to 16 or 18 rather than 14 years), we might expect to
see centenarians at much smaller population sizes: with more than three fourths of
the prevalence estimates above 1 per 10 million, we might predict that centenarians
have existed almost since the dawn of the agricultural period some 10,000 years ago.
On the other hand, if late adult mortality was higher (e, of 10 or 12 years), we would
have difficulty claiming that the emergence of centenarians occurred prior to the
mortality decline of the industrial era. Our basis for believing that agricultural es, was
centered around 14 years was presented in the preceding section and will not be
repeated here. It is obvious, however, that the strength of our conclusions regarding
the timing of the emergence of centenartans depends critically on this assumption.

Discussion

[t is possible, of course, that the reality may be a mixture of the mortality scenarios
we have presented here. Undoubtedly, different populations living at the same
moment experienced different mortality conditions, due to variations in diet,
environment, and exposure to disease. This chapter essentially ignores these spatial
variations and considers what the average mortality level of the entire world
population might have been. Given the absence of detailed information, this strategy
seems to be a useful simplification. There appear to be no obvious theoretical reasons
for worrying about the effects of heterogeneous mortality patterns on our conclusions.
A more thorough investigation of this topic would perhaps be warranted but is beyond
the scope of this study.

Another form of variation in mortality patterns that we have thus far dismissed
may also deserve more careful consideration. Although we have argued that there is
no clear evidence of a long-term temporal trend in mortality levels during the
agricultural era, it seems prudent to entertain at least the possibility of such a change.
For example, if there was a gradual increase in late adult life expectancies (e.g., es,)
during this period, then the gradual emergence of centenarians in the population might
be attributed to both decreasing mortality and increasing population size.
Contemplating this scenario, we might wish to restate our main conclusions regarding
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occasional centenarians or prevalence levels for centenarians in the population. In
each case, we would define a cut-off point in terms of both a mortality level and a
population size where we would expect to find some minimal level of centenarians.
Using our earlier criteria (a preponderance of evidence that there would have been at
least one centenarian per century, or an average of at least one living centenarian at
any given time), we would seek a combination of ey, and total population gize that
would give positive indications of the emergence of centenarians. Based on the
evidence presented here, one combination that would work would be an e, around
14 years or greater and a population size of at least 100 million. Decreases in e,
would need to be associated with very large increases in population size: for
example, an ey, around 12 years would require a population size of over 1 billion
people 1n order to indicate the emergence of centenarians by either of our two criteria.

Finally, we may note that the two criteria for the emergence of centenarians
that we have examined may seem to be rather different, and yet they produce very
similar results. For example, it is obvious that a prevalence estimate indicating an
expectation of one or more living centenarians at all times is a stricter requirement
than a very high probability of observing at least one centenarian per century. The
relationship between the two criteria is not simple, however: an expectation of one
centenarian per year (on average) is by no means a guarantee of one centenarian in
each single-year cohort. In fact, we know that this expectation must be around 5 or
more in order to observe at least one centenarian with virtual certainty. Thus, the
strictness of the two criteria differs, in some sense, by a factor of around 20, not by
a factor of 100.

Why, then, do the two criteria yield similar results, if in fact one criterion is 20
times more difficult to achieve than the other?  The answer lies in the
operationalization of the two criteria. In effect, because it was more amenable to a
simulation exercise, the prevalence criterion received a more careful
operationalization. The occasional centenarian method examined a very broad range
of parameters, some of which stretch the limits of plausibility, and sometimes gave
equal weight to parameter choices that were not equally likely. In particular, our
operationalization of the occasional centenarian method included consideration of a
model assuming exponential increase in the age pattern of mortality (v = 0). In our
quantitative summaries, we gave equal weight to this scenario, although it can not be
considered equally likely based on available evidence. This choice, in particular, had
the effect of making the occasional centenarian criterion more strict, thus yielding
results that are similar in character to the prevalence criterion. It would of course be
possible to operationalize the occasional centenarians criterion using a simulation
model, but we have chosen to present the results of this method in their current form
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because they are informative in a different way. So presented, the results help us to a preponderance of evidence (three quarters of the scenarios) is consistent with
understand the importance of each parameter in the mortality model. In terms of our such a conclusion. ‘ o _
final results, however, it is better to rely on the conclusions of the prevalence model. 5. Using the prevalence criterion, our best estimate indicates that the emergence
of centenarians should have occurred by around 2500 B.C. in a world
population of some 100 million persons. Thus, this emergence probably
: occurred during the time of the first great human civilizations (e.g., the Qld
Conclusion

Kingdom in Egypt, the Sumerian period in Mesopotamia). This conclusion,
however, is very sensitive to our assumption about the average level of ey, in
the pre-industrial period. Although our evaluation of the available evidence
leads us to the conclusions stated here, if e, was in fact nearer to 12 than to
14 years throughout this period, then Jeune’s hypothesis that there were no true
centenarians prior to 1800 may be closer to the truth.
! 6. Finally, although we believe that the emergence of centenarians probably
occurred well before the industrial era, our analysis provides rather strong
| support for the assertion that there were almost certainly no true
: super-centenarians (individuals aged 110 or above) prior to the mortality

The arguments and conclusions of this chapter can be summarized as follows:

l. Reliable records of centenarians in pre-industrial populations are not widely
available. Therefore, statistical models are a useful tool for determining
whether it is likely that some centenarians may have lived during the
agricultural era.

0 There is no conclusive evidence of major long-term changes in human mortality
levels prior to about 1600 A.D. Through most of human history, life
expectancy at birth, ¢,, appears to have been centered in the low to mid
twenties, perhaps around 24 years. Life expectancy at age 50, ey, is thought decline of the past 200-300 years.
to have averaged around 14 years. These conclusions are based both on a wide
range of direct evidence (see Table 1) and on two collections of model life ‘
tables (Coale-Demeny 1983, Preston et al. 1993).

3. Centenarians remain a rarity even in modern, low-mortality populations, with
an estimated prevalence around 50-100 per million.® Thus, statements
claiming that "centenarians were very rare prior to industrialization” do not
distinguish modern from pre-modern mortality regimes in a meaningful way.

4. Nevertheless, it is possible to define arbitrary criteria that allow us to estimate
the timing of the "emergence of centenarians." Two criteria of emergence are
proposed here: 1) virtual certainty (p > 0.99) of at least one centenarian per
century, and 2) a prevalence estimate that implies at least one living
centenarian (on average) at any time. In both cases we examine a variety of

plausible mortality scenarios and claim evidence of emergence if and only if

8For example, Labat and Dekneudt (1989) estimate that there were 3000 centenarians in France
in 1988. Thus, in one of the world’s most aged populations, numbering around 57 million, there
are some 52 centenarians per million population. Similarly, there were an estimated 25,000
centenarians in the United States during 1985 (U.S. Bureau of Census 1987). In a population of
some 240 million, this corresponds to a frequency slightly greater than 100 per million. Since the
French population is generally more aged than the U.S. population (for example, in terms of the
proportion above age 65), we should expect a higher proportion of centenarians in France than in
the U.S. Although the U.S. figure is derived from Social Security records, it may still be biased
upwards by age exaggeration (Coale and Kisker 1990).
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Table 1: Estimates of Life Expectancy in Various High Mortality Populations
Source € es
Acsidi & Nemeskéri (1970)
Stone age 21.1 12.2
Copper age 28.9 104
Roman era 27.8 15.7
Middle ages 28.7 10.7
Thatcher (1980)
Breslau, 1687-1691 (from Halley) 28 17
Liverpool, 1841 26 16
English Life Table No. 1, 1841 41 21
British Peerage (Hollingsworth 1977)
Males cc.1550-1574%* 37.8 12.6
cc.1575-1599 36.0 14.6
cc.1600-1624 33.6 14.4
cc.1625-1649 31.7 14.6
cc.1650-1674 30.0 15.5
cc.1675-1699 33.2 15.8
cc.1700-1724 34.9 17.0
cc.1725-1749 38.8 18.3
Females cc.1550-1574 38.2 11.6
cc.1575-1599 38.3 12.5
cc.1600-1624 35.9 12.9
cc.1625-1649 342 13.2
cc.1650-1674 33,7 17.7
cc.1675-1699 35.3 15.8
cc.1700-1724 37.5 18.0
cc.1725-1749 37.4 20.4
Qing Imperial Lineage, males only (Lee et al. 1993 )%**
1700-09 through 1890-99 22-42 9.5-12.5
(increasing) (steady)
Wang clan, males only (Zhao 1994)
0-499 - 16.8
500-999 - 16.8
1000-1199 = 17.9
1200-1399 - 18.2
1400-1499 18.3
1500-1599 18.2
1600-1699 - 17.9
1700-1760 - 16.5
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Table 1: Estimates of Life Expectancy in Various High Mortality Populations, continued Table 2: Comparison of ¢, and e, in High-Mortality Model Life Tables
Source ) €59 Coale and Demeny
Indian Life Tables (Davis 1951) Female Male
Males 1872-1881 23.7 13.9 2 - " .
1881-1891 24.6 14.3 2!
1891-1901 23.6 13.6 NORTH
1901-1911 22.6 14.0 Level 1 20.0 14.7 17.6 13.2
1911-1921 19.4 143 te"ei § ;ig 12‘1‘ ;’2 512
eve . . . )
ﬁiizi ;S? 1‘712 Level 4 27.5 16.8 | 24.8 15.2
Level 5 30.0 17.5 27.2 15.9
Females 1872-1881 25.6 15.0 SOUTH
1881-1891 25.5 15.6 Level | 20.0 15.5 19.9 14.8
1891-1901 24.0 14.5 Level 2 22.5 16.1 22.3 15.4
1901-1911 233 14.3 Level 3 25.0 16.7 24.7 16.0
1911-1921 20.9 15.0 Level 4 27.5 17.4 27.0 16.6
1921-1931 26.6 4.4 Level 5 30.0 18.0 29.3 17.1
1931-1941 31.4 18.4 EAST
Level 1 20.0 14.9 17.4 14.6
Slave Populations Level 2 225 15.5 19.9 15.2
Trinidad, 1783-1816 (John 1988) Level 3 25.0 16.1 22.4 15.7
Females 17.3 13.5 Level 4 27.5 16.7 | 249 16.2
Males 173 11.9 J Level 5 30.0 7.3 27.4 16.7
Guyana, 1820-1832 (Roberts 1952) 228 1.1t WEST
Grenada, 1818 (Koplan 1983) 25.9 12.7 LSl | 2001143 1180 12.7
Level 2 22.5 15.0 20.4 13.3
Liberian Immigrants, 1820-1843 (McDaniel 1992)% Level 3 25.0 15.6 22.8 14.0
Raw, Females 2.2 79 ‘ Level 4 27.5 16.3 25.3 14.6
Conditional, Females 25.8 9.6 l____Pr_t_'_______M_D_____‘______—__———_'
Conditional, Males 23.9 8.3 e R s
Sweden, 1751-1760 o =
Males 35.6 18.8 Female Male
Females 38.5 20.3 10 11.3 10.0
12 11.8 10.5
i The life table values for British peers refer to 25-year birth cohorts, designated by "cc." 14 123 11.0
followed by the birth years. I;’ ﬁ; 1.5
ot Numerical estimates of Qing life expectancy were extracted from graphs published by Lee 20 13'7 gz
et al. and therefore are presented here as a range of values with an indication of the long- 22 14:2 12‘9
term trend in parentheses. 24 14.7 13:4
T The value of e, for Guyanese slaves was derived by linear interpolation using the values of 26 15.2 13.9
e, and es, given by Roberts (1952). 28 15.8 14.5
iy For Liberian immigrants, "raw" refers to life tables computed using all deaths recorded after | 30 16.3 15.1

arrival in Liberia; "conditional" refers to life tables computed using only deaths recorded at

least one year after arrival in Liberia.
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Table 3:  World Population Estimates from the Neolithic Revolution until 1750
(in millions)
Year(s) Indifference range
10,000-8,000 B.C. 5-10
0-14 AD. 270-330
1000 275-345
1250 350-450
1500 440-540
1750 735-805
Source: Durand (1977), Table 5.
Table 4:  Simulated Estimates of the Prevalence of Centenarians and Super-

Centenarians (per 100 million population)

Percentile
2.5 25 50 75 97.5
Centenarians | 0.099 1.30 4.72 16.9 143.5
Super-Centenarians 0 0.00025 | 0.00209 0.0127 0.4051

Sensitivity of Centenarian Prevalence Estimates (per 100 million

Table 5:
population)
Percentile
2.5 25 50 75 97.5
Base model 0.10 130 | 472 | 169 | 144
es, = 10 0.00 0.00 0.00 0.03 2.0
es = 12 0.00 0.05 0.31 1.7 30
es, = 16 1.25 135 | 354 87.2 401
eso = 18 8.98 66.7 155.9 3240 1083
Higher ¢m., 0.53 7.41 26.0 79.7 610
Lower gy, 0.02 0.35 1.32 4.4 36
Higher ¢ 0.03 0.69 2.71 9.5 86
Lower ¢ 0.31 3.07 8.94 31.3 189
Higher asymptote 0.02 0.50 2.09 9.5 83
Lower asymptote 0.31 3.53 10.1 27.5 178
Larger © 0.02 0.80 4.43 25.4 514
Smaller ¢ 0.23 1.73 4.81 12.2 73
Wild card I, 0.10 1.32 4.82 16.5 161
r=-1% 0.22 2.91 10.6 37.5 311
r=+1% 0.05 0.61 2.21 8.0 69
r =429 0.02 0.27 0.98 3.5 31
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Figure 1. Gompertz-Perks Family of Mortality Curves. tables, showing OLS regression line plus and minus its maximum residual.
Notes:
Notes: 1) Logarithmic scale on Y-axis;
1) Parameter values used in this illustration are: a = 0.00025, b = 0.095, ¢ = 0.008, and v = 1. ! 2) UPPER CASE = female, lower case = male;
2)  Dotted lines show Gompertz curve for comparison. | 3)  E = East, N = North, $ = South, W = West (Coale-Demeny);

| 4) C = Chilean, F = Far Eastern, L = Latin American, A = South Asian, G = General (U.N.).
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to evaluate the likelihood of observing an

"occasional centenarian” circa 8000 B.C. (see text for explanation).
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Figure 6. Hypothetical scenarios to evaluate the likelihood of observing an |
"occasional centenarian" during the 17th century A.D. (see text for explanation).
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Figure 7. Histogram of simulated prevalence estimates in "base model" (see text for
explanation).

Notes: Histogram shows the logarithm (base 10) of simulated prevalence estimates. The total
number of estimates is 1,000.




