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1 Homeostasis

If demographers could ask one question of the wisest of our prehistoric an-
cestors, they would surely ask, ”How was the growth of your population kept
so slow?” The average rate of growth in the numbers of our ancestors over
a million years cannot by any stretch of the imagination have exceeded one
thousandth of our own world rate of growth in the last two decades, and this
low long-term average growth rate is the one undisputed empirical fact about
the hunter-gatherer epoch in human demography.

Two kinds of explanations compete with each other. There are those who
believe that average levels of death rates compared to average levels of birth
rates themselves suffice to account for the slowness of growth. High mortal-
ity in the ”state of nature” never gave humans’ biological potential for rapid
growth a chance. Opposing these views are those who believe in homeostasis.
Humans’ biological potential for rapid growth had many chances, but ever
again came up against the limits of the carrying capacity of the environment
exploitable by existing technologies. Natural regulatory mechanisms made
growth rates respond to the density or size of population, so that average
levels of birth and death rates are not the appropriate concepts for analy-
sis, but should give place to elasticities of response defined with regard to
changes in density or size. These two competing points of view, needless to
say, have ideological concomitants for contemporary population controversies
concerning the nature of limits to growth. Historically, the ghost of Thomas
Hobbes confronts the ghost of Thomas Malthus. Today, exemplars of the two
points of view are found recently respectively in Ester Boserup and Ansley
Coale (Note 1).

Empirical evidence is in all respects indecisive. Must paleolithic mortal-
ity have been much worse than mortality under, say, Louis XIV? Skeletal
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evidence argues yes, but it is fraught with selection biases (Note 2 ). Data
on contemporary hunter-gatherers suggests no; it is carefully collected but
of contestable relevance (Note 3 ). That humans’ physiological potential for
large families or long lifespans dates back to paleolithic times at all is only
a working hypothesis (Note 4 ). On the other hand, the notion of carrying
capacity as it might apply to humans is problematic (Note 5 ), and even in
historical times the operation of Malthusian feedback is not easy to measure
directly (Note 6 ).

These empirical uncertainties justify attention to any a priori arguments
that might limit the range of possibilities. An important a priori argument
for the necessity of homeostasis in prehistory runs as follows: The time spans
of prehistory are very long. They are measured in tens of thousands of gener-
ations. Suppose, contrary to the assumption of homeostasis, that the process
governing births and deaths at the family level had been independent of the
number of families over such long time spans. Then the inescapable ran-
domness in births and deaths and in the climatic and other determinants of
birth and death rates would have cumulated, eventually imparting such ran-
dom variability to population numbers as to have driven the human race to
extinction or to incredible size. Thus, by reductio ad absurdum, one should
conclude that population growth rates were not wholly independent of pop-
ulation numbers, and that homeostatic mechanisms in the broadest sense
applied.

This article examines that argument and similar a priori arguments in
the light of advances in the mathematical theories of population growth.
Branching processes in varying environments and their associated martin-
gales and diffusion approximations have seen rapid development in the last
dozen years (Note 7 ). Asymptotics, questions of growth or extinction over
very long periods of time tending toward infinity, are precisely the part of
the theory most actively pursued, so the vast long course of prehistory offers
itself as the application of this subject par excellence. However, it turns out
that even 40, 000 generations in the context of slow growth are not enough
to make some of the asymptotic theorems apply, and formulas for actual cal-
culation of probabilities and bounds have hardly been a chief product of the
discipline so far. Thus cautious and intricate juggling and enhancement of
existing theory are required for the results presented in this article. Future
developments, it is to be hoped, will make more refined conclusions soon
practicable.
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The appeal of homeostasis as a way out is no abolute.

Perhaps some number like 0.000015 is no less natural than zero or than
any other number. Put another way, the time it took the human race to reach
into the millions, having survived, has to be something, and why not nearer a
million than ten thousand or ten million years? Nonetheless, astronomers in
the same predicament with the age of the universe have persisted in seeking
in ”inflationary” theories an explanation for the age of the universe fixed by
the dimensionless curvature (Note 9), and demographers might similarly be
disposed to seek in homeostasis an explanation for the age of the race. Unlike
the argument from cumulated randomness, the argument about mean levels
encroaches quickly on metaphysics rather than on statistics, and here it will
not be pursued.

It is a matter of great complexity, definitional as well as empirical, to
say when the human population began, and what numbers should be posited
for it at what times (Note 10). The argument from cumulated randomness
might be urged in any of several contexts. It might be applied to all ho-
minids, separating from apes over five million years ago, encompassing the
australopithicenes together with their successors. Or it might be urged for
the genus Homo , from the appearance of Homo habilis around 2.3 mil-
lion years ago onward. At the other extreme, it might be restricted to our
own species Homo sapiens, dating from about 300, 000 years ago. The con-
text chosen here lies midway between extremes, encompassing the growth
in numbers of the large-brained primate species from the advent of Homo
erectus, as much perhaps as 1.2 million years ago, through the exclusively
hunter-gatherer epoch of Homo sapiens down to the origins of agriculture
among Homo sapiens sapiens in the Neolithic Transition about 8000 B.C.

The shorter the period, the more stringent the test of the argument, since
a shorter period allows randomness less time to cumulate. A million years
seems a safe underestimate for the temporal range of large-brained primates.
By poetic license, all females of the genus will be called ”women”, and all
models will be one-sex models restricted to females. A safe lower bound for
the starting female population is certainly 1. The effect on the calculations of
the choice of starting size larger than 1 is one theme of the following sections.

Size estimates in the midst of prehistory mainly derive from density mul-
tipliers based ultimately on modern hunters and gatherers, multipliers which
are applied to areas believed inhabited from archaeological evidence. These
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estimates thus build in certain assumptions of homeostasis, and the present
study will not rely on them. They do, however, provide upper bounds for fi-
nal population size on the eve of the Neolithic. Estimates of final population
size range up to 15 million individuals ( Note 11) with most writers favoring
figures closer to 6 million individuals or 3 million women.

Thus one arbitrary but reasonable standard scenario, for which the results
of the various models of random population growth will be compared, posits
growth from at least 1 female to upwards of 3 million females, over a time
frame of a million years consisting of 40, 000 generations averaging 25 years
each. The period ends at the Neolithic Transition when evidence of higher
growth rates suggests a sweeping change in demographic patterns. This sce-
nario implies a maximum growth ratio per generation of m = 30000001/40000,
or a maximum yearly crude growth rate per year of

(1/1000000) log(300000) = 0.000015.

These choices give one standard case. Readers will surely have other prefer-
ences, and the calculations to follow deserve to be repeated as these prefer-
ences are expressed.

2 Sources of Randomness

Randomness in population processes is of two kinds. There is specifically de-
mographic randomness – when people are subject to fixed risks of conception
or of dying, the occurrence of these events is still a matter of chance, the luck
of the draw, so to speak, and family sizes vary. On top of this variability is
the randomness that economists are prone to study – risks themselves vary
haphazardly in response to circumstances and conditions in the community,
area, and world, so that the rates that govern family sizes vary.

Random draws (given fixed rates) and random rates – the distinction is
not a sharp one, but it is serviceable. Random draws dominate in small
populations such as those studied by anthropologists and historical demog-
raphers. Standard deviations track the square root of population size, the
same rule as governs random sampling, though the interrelationships between
mothers and daughters and among others in a tribe or village violate the in-
dependence assumption behind random sampling and full statistical analysis
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is complex (Note 12). Random rates overshadow random draws for groups
of thousands or more. The random rate set is like a deck of cards chosen at
random from a shelf of decks. The group consists of those who draw cards at
random from the same deck. The standard deviation tracks the group size,
not its square root, so that the proportional effect does not disappear even
for large groups. Spencer as well as Lee (Note 13) has operationalized the
distinction with preindustrial villages with a variety of sizes by plotting the
standard deviation in birth counts against village size and separating linear
from square root trends. Without such data, the problem is to specify what
is the group that ”draws from the same deck” in some respect, when the rates
vary with local flood and drought, with huntable herds, with tribal wisdom,
or with global climate. The problem will be an important one in Section 5.

3 Random Draws and the Extinction Threat

The chief long-run contributions from random draws compose the random-
ness modeled by Galton-Watson-Bienyame Branching Processes. Correla-
tions between the risks affecting different families are neglected, and each
new-born woman has chances of surviving and bearing no daughters, one
daughter, two daughters, etc., independent of every other woman. Her
daughters are, in the simple version, independently subject to the same
probabilities, and each generation produces the next one independently in
accordance with the same probability law. In more complicated versions the
probability law varies by age or varies from generation to generation. In all
versions, childbearing rates may vary from woman to woman, but propen-
sities toward large or small families may not be inherited by descendants,
as they may in the more complicated models mentioned in Section 6. If
rates vary from group to group in ways that persist over generations, the
model should be taken to apply to the group with the highest average rate
of growth, which comes over a long time period to dominate the popula-
tion. The key assumption is always the independence of different draws for
completed family size.

The classic result of Branching Process Theory is the one that lends initial
credence to the reductio ad absurdum argument for homeostasis, the result
mentioned by Jagers in the quoted passage: With probability one, as n in-
creases, the size of the n-th generation either converges to zero or increases
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to infinity. Even if the expected mean growth rate is zero, there is zero prob-
ability of the population continuing to fluctuate within reasonable bounds.
This result holds true when age structure is built into the model and, in all
interesting cases, even when the probability law goo growth corresponding
to m near unity, starting with one original ancestress, the probability of non-
extinction is close to 2(m−1)/V . For m near 1, V should fall between 1 and
2, since variances in human completed family sizes are typically less than
twice the means, and since higher V would demand less than one chance in
three of any surviving daughters at all. With V = 2, the standard case for
a million years of prehistory with m = 1.000373 demands a probability of
ultimate extinction q = .99926. To keep the extinction chance as ”small” as
99m = 1.005, giving 4(1086) women after 40, 000 generations, or reaching 3
million women in a mere 75, 000 years.

These overwhelming extinction probabilities, however, tell less than they
seem to tell. Although the mean time for extinction is very late, and ap-
proaches infinity as m approaches unity, most extinctions happen early when
the population is still at low size. There is a famous theorem (Note 14) that
the distribution of time to extinction has probabilities for large times that
come to match a geometric series. Unfortunately, in this case, that approx-
imation is still poor after 5000 generations. The exact formulas for a very
special shape of family size distribution, the reduced geometric distribution,
turn out to give a much better approximation in general for m near 1. The
probability that extinction has not yet happened by the n-th generation is
close to

2(m− 1)/(V (1 −m−n + 2(m− 1)m−n)).

Taking V = 2, it follows that extinction chances reach 99.9% after only
850 generations or 21, 000 years. Conditional on extinction not yet having
occurred, the expected population size then would be about 1372 women.
Once a population reaches such a size, the probability of extinction, though
never negligible, drops to tolerable levels.

The high extinction risk is wholly a consequence of starting with a single
ancestress. Keeping m = 1.000373 and V = 2, the probability of non-
extinction could be raised to 25% by starting with 771 women, or to 90%
by starting with 6173, taking respectively a little more or a little less than
half-a-million years to reach 3, 000, 000 from these starting sizes. This is an
important lesson. The extinction threat built into the process of random



Homeostasis 24 September 1985 7

draws does not directly force a recourse to homeostasis. Instead, it forces
the adoption of a different model for humanity’s beginning period.

The meaning of an initial population size, of course, raises a host of
conceptual questions about the definition of the human line. Underlying the
demographic phenomena under study there is an evolving population of genes
which would need to be modelled for a full account. But any genetic model
for the processes of transformation and replacement that led to Homo erectus
from Homo habilis and from Homo erectus to Homo sapiens and to us would
involve so many cmplexities as to divert attention away from demographic
randomness altogether.

Some of the relevant concepts are actually easier to formulate at the de-
mographic level than at the deeper genetic level. Every daughter has one and
only one mother. In a one-sex demographic model the set of ancestresses a
million years back from whom today’s women descend in the female line is
sharply defined. The wider set of females a million years back sufficiently
genetically similar to the actual ancestresses that, but for the vagaries of de-
mographic chance, they could have had unexceptionably human descendants
by today’s standards, is a hazier conceptual construct. But the size of this set
is less elusive than its nature. The calculations of the preceding paragraphs
can be rephrased to show how big a stock of potential ancestresses a million
years back with descendants subject to the same growth rates as the actual
ancestresses would be required to keep the odds of extinction under control.
The growth-rate endowment is partly a matter of selective advantage vis a
vis a wider population of female hominids, partly a matter of the fortunes of
mate choice, but whatever the sources, the genetic and environmental pro-
cesses did produce some trajectory of growth rates, those growth rates do
imply some level of cumulating randomness, and those levels of randomness
are subject to evaluation.

Given a final population of three millions, a time span of a million years,
and varaiance V of completed female family size close to 2, consider requiring
that the probability of extinction from random draws fall below a value q.
This requirement essentially fixes the (method of moments) estimates of the
minimum expected number of actual ancestresses in the wholly female line,
the minimum starting population size of potential ancestresses in the wholly
female line, and the maximum long-term average growth rate. For 50these
estimates are less than one expected actual ancestress, 4221 potential an-
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cestresses, and m = 1.000164. For 10actual ancestresses, 18, 001 potential
ancestresses, and m = 1.000155. The lesson is that the extinction threat
would recede if one were willing to assume that tens of thousands of the
later representatives of Homo habilis were qualified in the appropriate sense,
whatever it might be, to generate descendant Homines erecti. Whether such
a radically ”polyphyletic” picture is tenable is a question that must be left
to anthropological debate.

The other way out of the extinction threat is to allow a small number of
progenitors but to posit higher growth rates during an initial period before
safe sizes were attined. One can imagine a story in which the earliest human
forbear or forbears escaped immediate extinction by finding themselves in
an unusually favorable environment, a small safe and bountiful corner of the
world, or a brief interlude of beneficently balanced sun and rain. Growth rates
in the earliest generations could have been high enough to carry the species
out of danger of extinction from the cumulative effects of random draws.
As humans spread out to less favorable homes or the climate returned to its
usual mixture of good or bad, average growth rates could have dropped down
to their long-term modest levels, but sizes could have been by then sufficient
to keep the chance of extinction low. In such an account, the early years of
humanity would bear some resemblance to a story of Eden, revised to put
the serpent’s appearance some generations later in the drama.

Strictly speaking, this alternative involves a kind of homeostasis. Popu-
lation growth rates decrease as population size is increasing. But this kind
of homeostasis is not the usual kind, in which growth rates respond to size or
density over a wide range of sizes, not just near size zero, the lower boundary
of possible population size. It is conceivable that there are some advan-
tages, for instance, the avoidance of war, which are only likely to be grasped
when the whole interacting population is small. In this case, it makes sense
to speak of ”lower-boundary homeostasis” and distinguish it from ordinary
homeostasis. In the other case, where a favorable niche might have happened
to exist at the right time and place to give the race its chance, perhaps after
many brief unsuccessful tries, the connection between low size and favorable
rates is more fortuitous and less repeatable, and it does not seem right to
speak of homeostasis at all.

The period during which the expected population size remains small is
still the chief determinant of extinction due to random draws even when
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family size patterns are allowed to vary deterministically from generation to
generation. Athreya and Karlin (Note 15 ) have shown, to good approxima-
tion, that 100 generations over which rates dictate an expected size of 500
people contribute the same amount to the cumulative probability of extinc-
tion as 10, 000 generations over which rates dictate expected sizes of 50, 000.
The calculations deal with expected sizes. Of course extinction is occurring
when the actual size is dropping below the expected size due to unfavorable
random draws. The order of high and low expected sizes is irrelevant in
the calculation. If an ice age drove the expected total population down into
the thousands late in prehistory, the extinction threat from random draws
would be the same as in the early years. But it is not plausible to imagine
fluctuating conditions so extreme as ever to drive expected sizes low enough
to cause trouble after the early fragile period had been well passed. Thus
the conclusion stands: the threat of extinction from random draws necessi-
tates a special story for the earliest period, but does not require homeostatic
mechanisms over most of prehistory.

4 Random Draws and the Explosion Threat

The other threat is the threat of explosion. Does avoiding extinction commit
one to too high a probability that random draws would generate an implau-
sibly large population? The calculations are more difficult, but the answer
is no. As far as random draws with fixed rates are concerned, taking care of
extinctions also takes care of explosions.

The question of explosion has two aspects, the chance of sizes much larger
than the final size on the way to the final size, and the chance of a final size
itself much larger than the average value predicted by the model. By ”ex-
plosion” here is meant any increase of population beyond an upper limit of
plausible population sizes for prehistory, say, 9 million women or more. It
does not mean growth faster than exponential growth like the population
explosion of more recent history. The amount by which the maximum of a
branching process up to generation n is likely to exceed the size at time n is
not a quantity for which evaluable expressions have yet been found. Dividing
the size by its predicted average value produces the kind of process called a
martingale, and an inequality of Pitman (Note 16) does apply, but because
of the division by average size the bounds are tight in the early years when
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average size is small and loose in later years when average size is big and
tight bounds are most needed. Heyde and Brown’s (Note 17 ) special Cen-
tral Limit Theorem for branching processes has no guarantee of multivariate
convergence fast enough to cover the maximum. The best approach seems
to be a long-winded argument with the ordinary Central Limit Theorem and
Berry-Esseen Theorem (Note 18). It gives a figure less than .001 for the
probability that the maximum up to the 40,000-th generation exceeds the
size at the 40,000th generation by more than 20,000, given m = .000373 and
given that the size at the 40,000th generation is two million or more. Thus
the randomness is nearly all absorbed into the randomness in final size. The
random variation around the final size in the path approaching it for such
high final sizes is nearly negligible.

The other aspect of explosion is the randomness in final size itself. The
average final size has been prearranged to be 3, 000, 000. But it might turn
out that rates which made the average equal 3, 000, 000 also gave disquiet-
ing high probabilities to much higher sizes. Indeed, the branching process
starting with a single ancestress has this bad property, either dramatically
or moderately depending on whether the average is unconditional or con-
ditional on non-extinction. If the unconditional average equals 3, 000, 000,
the average size of nonextinct populations is some eight billion (Note 19 )
If rates are readjusted to make the average size of non-extinct populations
equal 3, 000, 000, the random distribution of final population size due to dif-
ferent random draws is very close to an exponential probability distribution,
with a 5% chance of more than 9, 000, 000 women at the end (Note 20 ).
Starting with a large enough initial population, 6173, to bring the extinction
probability down below 10between calculations with unconditional and con-
ditional averages. The final size distribution is close to a sum of exponential
random variables each of mean 1, 303, 184. The number of terms in the sum
corresponds to the number of starters whose families do not go extinct in
the pure female line, and is a random number with a nearly Poisson distri-
bution with mean 2.3021. Then the probability of random draws producing
a final size of more than 9, 000, 000, with rates that produce an average size
of 3, 000, 000, with 6173 starters, is only 4

In sum, the famous fault of branching process models, the choice between
extinction and explosion and nothing in between, is, for practical purposes,
a misconception. The fault is not the branching model, which allows for
random draws without homeostatic checks and balances, but rather the arti-
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ficial assumption of a tiny starting population size. The randomness is largely
built in when size is still tiny, and if a special story is allowed to provide for
growth to some thousands, the remaining randomness from random draws
is not enough to cumulate to alarming compass even over tens of thousands
of generations. Framed in terms of random draws, the kind of randomness
branching processes incorporate, the a priori argument for the necessity of
homeostasis fails.

5 Random Rates

The examination of the a priori argument for homeostasis in prehistory now
turns to the randomness of random rates. For two reasons, calculations
must be more tentative. First, unlike random draws, where the model itself
determines the scale of the random fluctuations, random rates may fluctuate
on any scale, and the appropriate scale has to be guessed from empirical
considerations. Second, solutions rely on approximations using processes
called diffusions, and no theorems yet exist specifying how close in practical
cases these approximations come. Thus the bounds obtained are indicative,
not rigorous, and rigorous bounds await further progress in the field.

There are three great issues in modelling random rates – first, the extent
to which luck varies, second, the size of the group which shares the same
good luck or bad luck, and, third, how long the same stretch of luck persists.
The last issue is the deepest one. The models of this section assume the
random influences on rates to be ephemeral and volatile. They are ephemeral
inasmuch as fortunate groups are not supposed to hold onto their superior
good fortune from generation to generation. They are volatile, inasmuch as
the mix of fortunes is supposed to change quickly, from era to era, over eras
that last a generation or a century, rather than a millenium or more. More
complicated models, in the next section, take up the possibility of durable
fortunes passed on to descendants and only eventually abating, as well as the
possibility of slow ground swells of change.

The second issue, how large a group shares the same luck, is another
crucial issue, but it is often neglected. Models often assume immediately
that luck is ubiquitous. They assume, for instance, that all members of the
population, whether a hundred or a million strong, share the same lucky
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or unlucky global climate. The simplest model with randomness introduced
entirely on a global scale is the random walk. At the other extreme, a model
in which randomness enters entirely at the local level is equivalent to the
branching process of Sections 2 and 3 with a higher value for the variance of
family size. Both global and local random rates can be combined into one
model, using diffusion approximations, and these alternatives will be treated
in turn.

A random walk model assumes that the crude growth rate is chosen each
era (generation or century) by a random coin toss with a biased coin, a coin
slightly weighted, in this case toward heads. The crude growth rate takes
on only two values, one positive (for heads), the other negative by the same
amount (for tails). Because this fixed variance is imparted to the rate of
growth rather than to the numbers gained or lost, it is the logarithm of
population size rather than the size itself that describes a random walk. The
logarithm takes an upward or a downward step each era by the amount of
the crude growth rate for the era. The variance equals the square of the step
size times 2p(1-p), where p is the probability of heads.

A starting population of 6, 000 women has its logarithm poised about
half-way between the logarithms for populations of one woman (the brink
of extinction) and 3, 000, 000 women. With no bias towards heads, that is,
with an average growth rate of zero, the odds of extinction before reaching
three million would be close to 50-50. With non-zero bias, much the same
remains true as long as the variance is well above the bias. To keep the
chances of non-extinction up to 90final target size on a logarthmic scale,
that is, a starting size of over 600, 000 members (Note 21 ). The strategy of
raising starting size to negate the extinction threat worked well with random
draws, but it turns out to be untenable with significant global randomness
in rates. The starting sizes required are too high. The alternative is to raise
the long-term average growth rate, reflected in the bias of the coin. Higher
average growth, however, implies shorter expected times to reach target size,
and therefore less tenable models for prehistory.

To keep the probability of extinction down to 10requires enough bias
in the coin to make the average growth rate per era times the logarithm
of starting size about equal to the variance, that is to say, about equal to
the square of the size of each step. The expected time it takes to reach
one boundary or the other, either extinction or the target total, is roughly
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inversely proportional to the variance and directly proportional to the length
of the era, the stretch of time over which the luck determined by one coin
toss persists. Thus the threat of reaching high sizes in an implausibly short
time is exacerbated about as much by halving the length of the era as by
doubling the variance or scaling up the standard deviation of the rates or the
step size of the random walk by the square root of two.

These tradeoffs imply that ubiquitous volatile random rates give a popu-
lation considerable potential for explosion, though it is difficult to know what
sorts of figures for the variance and the era length are appropriate. To keep
the expected time to reach either 9,000,000 or extinction up to the figure
of 20,000 generations would require a coin biased toward positive outcomes
with odds of no more than .50289 to .49711 and a crude growth rate fluctu-
ating no more widely than between−.062 and +.062 per generation, values
which correspond to rates of −.0025 and +.0025 a year. With a standard
deviation of .08 and eras of a generation each, keeping down the extinction
chance to 10time to reach 3, 000, 000 from 6, 000 would be only 6192 gener-
ations or 154, 799 years. These times are short enough to make the model
start to seem unrealistic, if the level of global variability incorporated is at
all appropriate.

Are standard deviations on the order of .06 or .08 per generation con-
ceivable for global variability in random rates? For England between 1541
and 1811, the standard deviation seems to be about 0.08 (Note 22 ). The
English rates were probably themselves subject to homeostatic control, and
might have varied more widely without it. Furthermore, the lives of hunters
and gatherers must have been much less predictable than those of English
villagers. At first glance, then, it does look as if the randomness of global ran-
dom rates would be sufficient to drive prehistoric populations to extinction
or explosion in the absence of homeostatic control.

The flaw in this argument so far is the assumption that the random rates
are ubiquitous, that prehistoric populations spreading over Africa, Europe,
and Asia shared the same stretches of good times and of bad times. English
villagers were all affected to some degree by a national market and threatened
by many of the same waves of plague and infection, as well as by the shared
vicissitudes of English weather, whereas the food and water, predators, and
prey of hunters and gatherers in distant areas must have been largely inde-
pendent. Widespread epidemics were probably unknown. What the whole
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population shared was mainly not even local weather, but global climate,
with its slower- changing pace. Thus it makes more sense to attribute most
of the variability in the growth rates of prehistoric population to local bands
or groups, and to attribute only a small portion of the variance to global
influences shared by all (Note 23 ).

Distinguishing between local and global components of variance in de-
mographic rates means relaxing the assumption that rates are ubiquitous.
Completed net female family size can be modeled by adding together an
individual random component , with variance VI plus a random tendency
toward larger or smaller surviving families shared with the L members of a
local group, a tendency whose level varies with a variance VL, plus a tendency
shared by the whole population of size x, consisting of x/L independent local
groups, with a small global variance VG. The overall variance in size next
generation as a function of size x in a given generation is

xVI + (x/L)L2VL + x2VG

or
( VI + L VL ) x + (VG) x2 = B x + Gx2

A hierarchy of components for local groupings in a hierarchy of sizes L
can also be averaged, with the same result that the variance is the sum of
a moderate multiple B of size itself, accounting for basic variability, plus a
tiny multiple G of the square of size, accounting for global variability. More
elaborate models are possible, involving correlations as functions of distance
together with spatial distributions for expanding populations in expanding
areas, such as Ammerman and Cavalli-Sforza (Note 24 ) have modeled for
the later, Neolithic period. But the simpler quadratic model for variances
seems sufficient for present needs.

The variance function is utilized with a diffusion approximation for branch-
ing processes in random environments, since the exact theory for times to
extinction and explosion is not yet sufficiently detailed. The diffusion ap-
proximation, first proposed by Feller (Note 25 ) takes as units not peple
but clumps of people and as time intervals not generations but clumps of
generations. It assumes both kinds of clumps to be close to infinite size,
compromising the practical value of the theory. Even though the technical
literature is silent on the problem, investigation suggests that with low av-
erage growth rates the diffusion approximation is already useful for bands of
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dozens and more, except for the detailed behavior of populations hovering
on the brink of extinction.

Diffusion theory derives its name from its applicability to the spatial
diffusion of particles and creatures, but its use here has nothing to do with
the spatial diffusion of populations, but rater to random spread in population
numbers. Widely used in genetics, diffusion theory provides a formula for
the odds of reaching a target size or upper boundary b before extinction,
starting from size x. It also provides a differential equation which leads
ultimately to probability distributions for extinction time or for the time of
reaching target size, given variance coefficients B and G in the formula for
variance as a function of size and squared size (Note 26 ). In applying the
approximation, it is necessary to choose whether to use the observed long-
term growth rate as an estimate of the expectation of the growth rate of
population in the model or as an estimate of the growth rate of expected
population in the model. The difference between the two has been a recent
issue in the biological literature (Note 27 ) and corresponds here to the choice
between Stratonovich solutions and Ito solutions to a stochastic differential
equation (Note 28 ). The former alternative is chosen here, in accordance
with a maximum likelihood criterion for estimation.

The larger the variance coefficients B and G, the larger is the starting
population size required to keep the chance of extinction before reaching
target size down to, say, 10The larger the starting size, the shorter is the
stretch of prehistory to which the models apply, and, beyond a certain point,
the more dubious their relevance. Exhibit Note 1 shows the bounds on B and
G imposed by requiring no more than 10no more than 20,000, and no more
than 60,000, when the long-term expected growth rate is held down to the
standard value of .000373 per generation. The ratio of the global component
of variance to the expected growth rate is obviously very tightly constrained.
For starting sizes below 20,000 and for B = 4, which corresponds to as
much local variance as individual-level variance, the global variance could
not exceed three-quarters of the growth rate. For starting sizes below 60,000,
it could not exceed about thrice the growth rate. These are tight bounds.

Although the constraints on global variability are severe, they are not so
severe as to rule out altogether the plausibility of models without homeosta-
sis, given the present state of ignorance as to likely levels of global variability.
Exhibit Note 2 shows the standard deviations in net reproduction rates when
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populations attain various sizes, for pairs of B and G values permitted under
the starting sizes considered in Exhibit 1 with nine to one odds of non-
extinction. These are not really outside the range that would be plausible
with moderate downward revision of the English figures to allow for hunters
and gatherers experiencing less ubiquitous random rates.

Each combination of variance coefficients B and G with a growth rate and
a starting size implies a different time to reach target size. What is easiest
to calculate is the expected time to reach either target size or extinction,
whichever is earlier. The expected time to reach target size conditional on
non-extinction is likely to be longer, since extinction would tend to occur
early. One might speculate that the random effects would drive the expected
times down, and make the models less plausible, but this effect turns out
not to be serious. With starting sizes of 20,000, the period remaining to
reach 3,000,000 without randomness would be 12, 095 generations, or a bit
less than a third of the whole 40, 000 generations. In this case, the random
effects reduce the expected time to target size or extinction only to 11, 837
when B = 1 and actually increase it to 13,262 when B = 6, given the largest
G compatible with 10

In summary, it appears that it is not easy but not impossible to counter
the threat of extinctions from random rates by restricting the model to a
period after a certain minimum size has been attained. It is not nearly
so easy with random rates as with random draws. But it is not yet out
of the questions. Further research on the local and global components of
randomness in historical populations is urgently needed, not only for its own
sake, but also to give a better basis for extrapolation back to prehistoric
settings. It may be that when this information is garnered, the permitted
levels in Exhibit Note 1 will appear distinctly low, and the a priori argument
for homeostasis will gain cogency. But at the present state of knowledge, as
a conclusive argument, it fails.

6 Persistent Fortune

The calculations of Section 5 , while relaxing the assumption of ubiquitous
rates, maintain the assumption that fortune is ephemeral. How do the con-
clusions fare under models which allow groups with endowments that lead
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to lower or higher than average growth rates to pass on some part of their
differential fortunes to their descendants?

Fortunes which persist so long as to constitute a practically permanent
selective advantage or disadvantage require no change in the analysis. The
group with the largest growth rate comes to dominate the whole population,
and, as mentioned in Section 3, calculations can proceed with the rates per-
taining to this group. Temporarily persistent fortunes differ in their effects,
depending on what determines the time during which advantages abate. Two
extreme cases come immediately to mind. One extreme case postulates luck
being dealt out to each matriarch and her descendants, to persist for a fixed
number of generations, until a new deal reshuffles luck among all living indi-
viduals. Then the process repeats, with luck descending to the same number
of generations, till a new reshuffling. This picture is an extreme version of
what, more realistically, would be gradual processes, in which advantageous
habits and technologies would be only imperfectly transmitted over each
generational juncture or would only remain advantageous while a particular
regime of environmental conditions prevailed. The key formal feature in this
first picture is the independence of the process of persistence from the growth
of groups or clans. The other extreme case postulates fortunes persisting un-
til groups grow nearly extinct, and have to merge, or reach a target size and
have to fission. In this picture, population mixing and dispersal would be
the driving force behind the decay of runs of luck.

The picture with periodic new deals implies a slight tightening of the
constraints derived in Section 5. This outcome is easiest to see if it is assumed
that local randomness dominates global randomness at small sizes. Then the
experience of a single clan during a single deal can be treated as a branching
process with its own, randomly selected generation ratio m (Note 29 ). If
the deal lasts long enough for the exponential growth of families dealt high
values of m to dominate, then the expectation of the number of descendants,
averaging over the randomness in m, could be much higher than it would be
if all families shared the average m. The experience from deal to deal can
be modeled as another branching process, with this higher expectation value
as its value of m. It is this higher value that must match the observed long-
term growth rate, so the contribution of m in the formula for the probability
of non-extinction is unchanged, and the only change is an increase in the
variance of completed female clan size, and a consequent mild increase in
extinction probabilities. It is interesting to note, however, that a positive
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long-term growth rate is compatible, under this model of persisting luck,
with zero or negative short term average growth rates, a feature that might
bear on the deterministic argument for homeostasis mentioned at the end of
Section 1.

The other picture, with size-dependent reshuffling of luck, calls for de-
tailed modeling of fission and fusion, which cannot be included here. In
general, since the compounding effect of exponential growth for fast-growing
clans is curtailed by fission, extinction rates and overall growth rates fall in
between the case of ephemeral random rates treated in Section 5 and the
case of periodic new deals. The most interesting aspect of this picture is
the difference in extinction probabilities and long-term growth rates that
can be produced by different splitting points and different splitting patterns,
when both local and global randomness contribute. Populations which split
into two groups of 500 when reaching 1000, and are endowed with new ran-
domly chosen rates, differ from populations which split into two groups of
1000 when reaching 2000, and from populations which split into 500 and 1500
when reaching 2000. The interest of these patterns, which await treatment in
a later study, lies in the mechanism for growth rates responding very slightly
but still systematically to change in the typical size of settlements and their
splitting propensities, changes that are easy to imagine accompanying the
Neolithic Transition which ends the period under study here (Note 30 ).

7 The Early Years

This investigation of the argument from cumulating randomness to the neces-
sity of homeostasis has found surprisingly little support for it as an argument
about the long course of hominid prehistory. But it can also be read as offer-
ing strong support for it as an argument about the early stages of population
growth before numbers reached substantial size. It is clear that if homeosta-
sis is not to govern populations in the later periods, a very different story
about rates and mechanisms of growth is required to avoid extinction in the
early years.

The threat of extinction even from random draws, and all the more from
the combined effects of random draws and random rates, is very severe in the
early years. This severity is evident in the models used which have assumed a
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constant long-term average growth rate for the whole of pre-Neolithic times.
It is more usual to assume that rates of growth tended to accelerate during
prehistory, in tandem with rising population and developing technology and
social organization, either gradually or in sporadic bursts (Note 31 ). Gradual
acceleration would imply that the early growth rates were even lower than
those used here, and that the population remained smaller and even more
direly threatened by extinction for an even longer period. Some emphatic
mechanism is needed to explain why early extinction was eluded.

It seems as if (contrary in a broad sense to the picture of accelerating
growth) average growth rates of families when the global or local population
was tiny must have been higher than the long-term total average observed.
This consideration harkens back to the reflections on lower-boundary home-
ostasis in Section 3. One alternative is to suppose that Homo erectus got
its start, perhaps after many false starts, in a temporary timespan or small
area particularly favorable to its survival. The other alternative is to suppose
that very small populations enjoyed advantages mitigated fairly abruptly by
modest population increase, a type of homeostasis, to be sure, but not the
type most often held in mind.

The advantages of low size need to be mitigated abruptly, for the growth
rates required to avoid extinctions from random draws while growing from,
say, a hundred females to a thousand, are high enough to take the thousand
to a million in as few as 8000 years. Such a deceleration in growth rates itself
could not persist, however, since that would quickly take the average growth
rates to levels below replacement. These arguments strongly suggest that the
demographic mechanisms governing population growth at very low popula-
tion sizes, locally or globally, must appear very differnt from the demography
of populations at moderate size.

One answer is, of course, the classic Malthusian account: The growth
potential of modern hominids far exceeded the rate at which new resources
could be brought within its purview. Population quickly rose to levels where
the limitations of resources kept it in check, and then rose slowly, tracking
the expansion of its resource base. There was a golden age, an interim to be
fruitful and multiply, but the golden age was brief. None of the calculations
in this paper have anything to say against that account. They only argue
against the necessity of adopting it.

Another answer would seem to be one that emphasizes the higher growth
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rates for very small sizes, either from intrinsic advantages or from some flex-
ibility in intentional responses to the threat of extinction. The elasticity of
response of growth to population size might be strongly positive at very low
sizes, strongly negative at very high sizes, but growth and size or growth and
density might be essentially decoupled over most of the range of hominid ex-
perience. The investigation in this paper suggests that random effects would
not cumulate even over long periods to negate this alternative possibility.

A priori arguments of the kind analyzed here are only worth consideration
when empirical knowledge is as sketchy as empirical knowledge of human
prehistory continues to be. The general models used here cannot supply
fine-grained information about the past, but they have served to bring to the
fore issues which deserve more systematic consideration, both in the study of
prehistory and in the study of modern population processes as they bear on
possibilities for the distant past. Malthus himself seems to begin his essay
with a belief that his principle of population had something like a priori
status. That claim has not been generally accepted. Nor does the more
quantifiable a priori argument for Malthusian homeostasis in the context
of prehistory analyzed in this paper merit acceptance. At its strongest, that
argument supports a much more general form of Malthusianism than Malthus
went on to propound; it supports a theory about boundaries rather than
about normal tendencies. But it may be that a homeostatic account of
population at the boundaries is not a foolish nor a vacuous alternative, either
as a theory of prehistory or as a theory of history itself.

Notes

The ideas presented here have been developed jointly in continual interchange
with Ronald D. Lee, partly in agreement and partly in disagreement with his
views, and I am greatly indebted to him. I also thank the National Institutes
of Health who have supported this work under Grant R01-08-R1HD18107. I
thank Carl Boe and Farzaneh Roudi for aid with calculations and Barbara
Parrish for aid with word processing. I have used Fortran notation for powers
and products: 2**7 means two raised to the seventh power, and 2*2 is four.
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